Wednesday, February 25, 2015

int cot^4(theta) d theta Use integration tables to find the indefinite integral.

Indefinite integral follows the formula: int f(x) dx = F(x)+C
where:
f(x) as the integrand function
F(x) as the antiderivative of f(x)
C as constant of integration.
 The given integral problem: int cot^4(theta) d theta resembles one of the formulas from the integration table. It follows the integration formula for cotangent function as :
int cot^n(x) dx = - (cot^((n-1))(x))/(n-1) - int cot^((n-2)) (x) dx .
Applying the formula, we get:
int cot^4(theta) d theta =- (cot^((4-1))(theta))/(4-1) - int cot^((4-2)) (theta) d theta
                  =- (cot^3(theta))/3 - int cot^2(theta) d theta
 To further evaluate the integral part:  int cot^2(theta) d theta  we may apply  trigonometric identity: cot^2(theta) =csc^2(theta) -1 .
int cot^2(theta) d theta =int [csc^2(theta) -1] d theta
Apply basic integration property: int (u-v) dx = int (u) dx - int (v) dx.
int [csc^2(theta) -1] d theta =int csc^2(theta) d theta - int 1 d theta
                                     = -cot(theta) - theta +C
Note: From basic integration property: int dx = x  then int 1 d theta = int d theta = theta .
From the integration table for trigonometric function, we have int csc^2(x) dx = - cot(x)  then int csc^2(theta) d theta=-cot(theta ).
applying int [cot^2(theta)] d theta=-cot(theta) - theta +C , we get the complete indefinite integral as:
int cot^4(theta) d theta =- (cot^3(theta))/3 - int cot^2(theta) d theta
                           =- (cot^3(theta))/3 -(-cot(theta) - theta) +C
                          =- (cot^3(theta))/3 + cot(theta) + theta +C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...