Friday, June 5, 2015

Calculus: Early Transcendentals, Chapter 7, 7.1, Section 7.1, Problem 38

intt^3e^(-t^2)dt
Let x=t^2
dx=2tdt
intt^3e^(-t^2)dt=intxe^(-x)dx/2
=1/2intxe^(-x)dx
Now apply integration by parts,
If f(x) and g(x) are differentiable functions then,
intf(x)g'(x)dx=f(x)g(x)-intf'(x)g(x)dx
If we write f(x)=u and g'(x)=v, then
intuvdx=uintvdx-int((du)/dxintvdx)dx
So, let's take u=x , then u'=1
and v=e^-x
then v'=-e^-x
intxe^-xdx=x*int(e^-xdx)-int(1inte^-xdx)dx
=x(-e^-x)-int(-e^-x)dx
=-xe^-x+int(e^-x)dx
=-xe^-x+(-e^-x)
=-xe^-x-e^-x
:.intt^3e^(-t^2)dt=1/2(-xe^-x-e^-x)
substitute back x=t^2 and add a constant to the solution,
intt^3e^(-t^2)dt=1/2(-t^2e^(-t^2)-e^(-t^2))+C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...