Saturday, June 20, 2015

Single Variable Calculus, Chapter 3, Review Exercises, Section Review Exercises, Problem 60

Suppose that $f$ and $g$ are the functions whose graphs are shown, let $P(x) = f(x) g(x), \displaystyle Q(x) = \frac{f(x)}{g(x)}$ and $C(x) = f(g(x))$. Find a.) $P'(2)$, b.) $Q'(2)$ and c.) $C'(2)$.

*Refer to the graph in the book.

a.) $P'(2)$


$
\begin{equation}
\begin{aligned}

P'(x) =& \frac{d}{dx} f(x) g(x)
\\
\\
P'(x) =& f(x) \frac{d}{dx} g(x) + g(x) \frac{d}{dx} f(x)
\\
\\
P'(x) =& f(x) g'(x) + g(x) f'(x)
\\
\\
P'(2) =& f(2) g'(2) + g(2) f'(2)
\\
\\
P'(2) =& (1) \left( \frac{4}{2} \right) + (4)\left( \frac{2}{-2} \right)
\\
\\
P'(2) =& 2 + (4)(-1)
\\
\\
P'(2) =& 2 - 4
\\
\\
P'(2) =& -2

\end{aligned}
\end{equation}
$


b.) $Q'(2)$


$
\begin{equation}
\begin{aligned}

Q'(x) =& \frac{d}{dx} \frac{f(x)}{g(x)}
\\
\\
Q'(x) =& \frac{\displaystyle g(x) \frac{d}{dx} f(x) - f(x) \frac{d}{dx} g(x)}{[g(x)]^2}
\\
\\
Q'(x) =& \frac{g(x) f'(x) - f(x) g'(x)}{g^2(x)}
\\
\\
Q'(2) =& \frac{g(2) f'(2) - f(2) g'(2)}{g^2 (2)}
\\
\\
Q'(2) =& \frac{(4) \left( \frac{-2}{2} \right) - (1) \left( \frac{4}{2} \right)}{(4)^2}
\\
\\
Q'(2) =& \frac{(4)(-1) - (1)(2)}{16}
\\
\\
Q'(2) =& \frac{-4 - 2}{16}
\\
\\
Q'(2) =& \frac{-6}{16}
\\
\\
Q'(2) =& \frac{-3}{8}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...