Tuesday, June 30, 2015

College Algebra, Chapter 7, 7.4, Section 7.4, Problem 60

A roadside fruit stand sells apples at $75$ cents a pound, peaches at $90$ cents a pound, and pears at $60$ cents a pound. Muriel buys $18$ pounds of fruit at a total cost of $\$ 13.80$. Her peaches and pears together cost $\$ 1.80$ more than her apples.

a.) Set up a linear system for the number of pounds of apples, peaches and pears that she bought.

b.) Solve the system using Cramer's Rule.

a.) Make a linear system for the number of pounds of apples, peaches and pears that she brought.

If we let $x, y$ and $z$ be the number of pounds of apples, peaches and pears, respectively. Then we have

$x + y + z = 18$

In terms of the cost,

$0.75 x + 0.90 y + 0.60z = 13.80$, remember that $100$ cents = $\$ 1$

If the peaches and pears together, cost $\$ 1.80$ more than the apples, then we have

$0.90y + 0.60z = 1.80 + 0.75x$

Thus, the system is


$
\left\{
\begin{equation}
\begin{aligned}

x + y + z =& 18
\\
0.75x + 0.90y + 0.60z =& 13.80
\\
-0.75x + 0.90y + 0.60z =& 1.80

\end{aligned}
\end{equation}
\right.
$


b.) Solve for the system using Cramer's Rule

We can write the system as


$
\left\{
\begin{equation}
\begin{aligned}

x + y + z=&18
&&
\\
75x+90y+60z =& 1380 && 100 \times \text{ Equation 2}
\\
-75x + 90y+60z =& 180
&& 100 \times \text{ Equation 2}

\end{aligned}
\end{equation}
\right.
$


For this system we have


$
\begin{equation}
\begin{aligned}

|D| =& \left| \begin{array}{ccc}
1 & 1 & 1 \\
75 & 90 & 60 \\
-75 & 90 & 60
\end{array} \right|
\\
\\
|D| =& 1 \left| \begin{array}{cc}
90 & 60 \\
90 & 60
\end{array} \right| -1 \left| \begin{array}{cc}
75 & 60 \\
-75 & 60
\end{array} \right| + \left| \begin{array}{cc}
75 & 90 \\
-75 & 90
\end{array} \right|
\\
\\
|D| =& (90 \cdot 60 - 60 \cdot 90) - (75 \cdot 60 - 60 \cdot (-75)) + (75 \cdot 90 - 90 \cdot (-75))
\\
\\
|D| =& 4500
\\
\\
|D_x| =& \left| \begin{array}{ccc}
18 & 1 & 1 \\
1380 & 90 & 60 \\
180 & 90 & 60
\end{array} \right|
\\
\\
|D_x| =& 18 \left| \begin{array}{cc}
90 & 60 \\
90 & 60
\end{array} \right| - 1 \left| \begin{array}{cc}
1380 & 60 \\
180 & 60
\end{array} \right| + 1 \left| \begin{array}{cc}
1380 & 90 \\
180 & 90
\end{array} \right|
\\
\\
|D_x| =& 18 (90 \cdot 60 - 60 \cdot 90) - (1380 \cdot 60 - 60 \cdot 180) + (1380 \cdot 90 - 90 \cdot 180)
\\
\\
|D_x| =& 36,000
\\
\\
|D_y| =& \left| \begin{array}{ccc}
1 & 18 & 1 \\
75 & 1380 & 60 \\
-75 & 180 & 60
\end{array} \right|
\\
\\
|D_y| =& 1 \left| \begin{array}{cc}
1380 & 60 \\
180 & 60
\end{array} \right| - 18 \left| \begin{array}{cc}
75 & 60 \\
-75 & 60
\end{array} \right| + 1 \left| \begin{array}{cc}
75 & 60 \\
-75 & 60
\end{array} \right|
\\
\\
|D_y| =& (1380 \cdot 60 - 60 \cdot 180) - 18 (75 \cdot 60 - 60 \cdot (-75)) + (75 \cdot 60 - 60 \cdot (-75))
\\
\\
|D_y| =& 27,000
\\
\\
|D_z| =& \left| \begin{array}{ccc}
1 & 1 & 18 \\
75 & 90 & 1380 \\
-75 & 90 & 180
\end{array} \right|
\\
\\
|D_z| =& 1 \left| \begin{array}{cc}
90 & 1380 \\
90 & 180
\end{array} \right| - 1 \left| \begin{array}{cc}
75 & 1380 \\
-75 & 180
\end{array} \right| + 18 \left| \begin{array}{cc}
75 & 90 \\
-75 & 90
\end{array} \right|
\\
\\
|D_z| =& 18,000

\end{aligned}
\end{equation}
$


The solution is


$
\begin{equation}
\begin{aligned}

x =& \frac{|D_x|}{|D|} = \frac{36000}{4500} = 8
\\
\\
y =& \frac{|D_y|}{|D|} = \frac{27000}{4500} = 6
\\
\\
z =& \frac{|D_z|}{|D|} = \frac{18000}{4500} = 4

\end{aligned}
\end{equation}
$


This means that Muriel buys 8 pounds of apples, 6 pounds of peaches and 4 pounds of pears.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...