Thursday, June 4, 2015

Calculus: Early Transcendentals, Chapter 4, Review, Section Review, Problem 14

lim_(x->(pi/2)^-)(tan(x))^cos(x)
=lim_(x->(pi/2)^-)e^(cos(x)lntan(x))
applying the limit chain rule,
lim_(x->(pi/2)^-)cos(x)lntan(x)
=lim_(x->(pi/2)^-)(lntan(x)/(1/cos(x)))
Apply L'Hospital rule, Test L'Hospital condition:
=lim_(x->(pi/2)^-)((lntan(x))')/((1/cos(x))')
=lim_(x->(pi/2)^-)((sec^2(x))/tan(x))/(sin(x)/(cos^2(x)))
=lim_(x->(pi/2)^-)(sec^2(x)cos^2(x))/(tan(x)sin(x))
=lim_(x->(pi/2)^-)1/(tan(x)sin(x))
plug in the value to evaluate limit
=1/(tan(pi/2)sin(pi/2))
=1/(oo*1)=1/oo=0
:.lim_(x->(pi/2)^-)e^(cos(x)lntan(x))=lim_(x->(pi/2)^-)e^0=1

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...