Monday, June 22, 2015

College Algebra, Chapter 7, 7.3, Section 7.3, Problem 6

Find the products $AB$ and $BA$ to verify that $B$ is the inverse of $A$ where $\displaystyle A = \left[ \begin{array}{ccc}
3 & 2 & 4 \\
1 & 1 & -6 \\
2 & 1 & 12
\end{array} \right]$ and $B = \left[ \begin{array}{ccc}
9 & -10 & -8 \\
-12 & 14 & 11 \\
\displaystyle \frac{-1}{2} & \displaystyle \frac{1}{2} & \displaystyle \frac{1}{2}
\end{array} \right] $

We perform the matrix multiplications to show that $AB = I$ and $BA = I$


$
\begin{equation}
\begin{aligned}

AB =&
\left[ \begin{array}{ccc}
3 & 2 & 4 \\
1 & 1 & -6 \\
2 & 1 & 12
\end{array} \right]
\left[ \begin{array}{ccc}
9 & -10 & -8 \\
-12 & 14 & 11 \\
\displaystyle \frac{-1}{2} & \displaystyle \frac{1}{2} & \displaystyle \frac{1}{2}
\end{array} \right]

=&

\left[ \begin{array}{ccc}
\displaystyle 3 \cdot 9 + 2 \cdot (-12) + 4 \cdot \left( \frac{-1}{2} \right) & \displaystyle 3 \cdot (-10) + 2 \cdot 14 + 4 \cdot \frac{1}{2} & 3 \cdot (-8) + 2 \cdot 11 + 4 \cdot \frac{1}{2} \\
\displaystyle 1 \cdot 9 + 1 \cdot (-12) + (-6) \cdot \left( \frac{-1}{2} \right) & \displaystyle 1 \cdot (-10) + 1 \cdot 14 + (-6) \cdot \frac{1}{2} & 1 \cdot (-8) + 1 \cdot 11 + (-6) \cdot \frac{1}{2} \\
\displaystyle 2 \cdot 9 + 1 \cdot (-12) + 12 \cdot \left( \frac{-1}{2} \right) & \displaystyle 2 \cdot (-10) + 1 \cdot 14 + 12 \cdot \frac{1}{2} & \displaystyle 2 \cdot (-8) + 1 \cdot 11 + 12 \cdot \frac{1}{2}
\end{array} \right]

\\
\\
\\

=&
\left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right]

\\
\\
\\
\\

BA =& \left[ \begin{array}{ccc}
9 & -10 & -8 \\
-12 & 14 & 11 \\
\displaystyle \frac{-1}{2} & \displaystyle \frac{1}{2} & \displaystyle \frac{1}{2}
\end{array} \right]

\left[ \begin{array}{ccc}
3 & 2 & 4 \\
1 & 1 & -6 \\
2 & 1 & 12
\end{array} \right]

=&
\left[ \begin{array}{ccc}
9 \cdot 3 + (-10) \cdot 1 + (-8) \cdot 2 & 9 \cdot 2 + (-10) \cdot 1 + (-8) \cdot 1 & 9 \cdot 4 + (-10) \cdot (-6) + (-8) \cdot 12 \\
-12 \cdot 3 + 14 \cdot 1 + 11 \cdot 2 & -12 \cdot 2 + 14 \cdot 1 + 11 \cdot 1 & -12 \cdot 4 + 14 \cdot (-6) + 11 \cdot 12 \\
\displaystyle \frac{-1}{2} \cdot 3 + \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 2 & \displaystyle \frac{-1}{2} \cdot 2 + \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1 & \displaystyle \frac{-1}{2} \cdot 4 + \frac{1}{2} \cdot (-6) + \frac{1}{2} \cdot 12
\end{array} \right]

\\
\\
\\

=&
\left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right]



\end{aligned}
\end{equation}
$


This shows that $A$ is the inverse of $B$, vice versa.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...