Saturday, September 12, 2015

College Algebra, Chapter 1, 1.3, Section 1.3, Problem 28

Solve $\displaystyle x^2 = \frac{3}{4} x - \frac{1}{8}$ by completing the square.


$
\begin{equation}
\begin{aligned}

x^2 =& \frac{3}{4} x - \frac{1}{8}
&& \text{Given}
\\
\\
x^2 - \frac{3}{4} x =& \frac{-1}{8}
&& \text{Subtract } \frac{3}{4} x
\\
\\
x^2 - \frac{3}{4} x + \frac{9}{64} =& \frac{-1}{8} + \frac{9}{64}
&& \text{Complete the square: add } \left( \frac{\displaystyle \frac{-3}{4}}{2} \right)^2 = \frac{9}{64}
\\
\\
\left(x - \frac{3}{8} \right)^2 =& \frac{1}{64}
&& \text{Perfect square}
\\
\\
x - \frac{3}{8} =& \pm \sqrt{\frac{1}{64}}
&& \text{Take square root}
\\
\\
x =& \frac{3}{8} \pm \frac{1}{8}
&& \text{Add } \frac{3}{8}
\\
\\
x =& \frac{1}{2} \text{ and } x = \frac{1}{4}
&& \text{Solve for } x

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...