Monday, September 14, 2015

f(x)=lnx ,c=1 Use the definition of Taylor series to find the Taylor series, centered at c for the function.

Taylor series is an example of infinite series derived from the expansion of f(x) about a single point. It is represented by infinite sum of f^n(x) centered at x=c . The general formula for Taylor series is:
f(x) = sum_(n=0)^oo (f^n(c))/(n!) (x-c)^n
or
f(x) =f(c)+f'(c)(x-c) +(f^2(c))/(2!)(x-c)^2 +(f^3(c))/(3!)(x-c)^3 +(f^4(c))/(4!)(x-c)^4 +...
To apply the definition of Taylor series for the given function f(x) = ln(x) , we list f^n(x) as:
f(x) = ln(x)
f'(x) = d/(dx)ln(x) =1/x
Apply Power rule for derivative: d/(dx) x^n= n *x^(n-1)
f^2(x) = d/(dx) 1/x
            = d/(dx) x^(-1)
            =-1 *x^(-1-1)
            =-x^(-2) or -1/x^2
f^3(x) = d/(dx) -x^(-2)
            =-1 *d/(dx) x^(-2)
            =-1 *(-2x^(-2-1))
           =2x^(-3) or 2/x^3
f^4(x)= d/(dx) 2x^(-3)
             =2 *d/(dx) x^(-3)
            =2 *(-3x^(-3-1))
            =-6x^(-4) or -6/x^4
Plug-in x=1 , we get:
f(1) =ln(1) =0
f'(1)=1/1 =1
f^2(1)=-1/1^2 = -1
f^3(1)=2/1^3 =2
f^4(1)=-6/1^4 = -6
Plug-in the values on the formula for Taylor series, we get:
ln(x) =sum_(n=0)^oo (f^n(1))/(n!) (x-1)^n
=f(1)+f'(1)(x-1) +(f^2(1))/(2!)(x-1)^2 +(f^3(1))/(3!)(x-1)^3 +(f^4(1))/(4!)(x-1)^4 +...
=0+1*(x-1) +(-1)/(2!)(x-1)^2 +2/(3!)(x-1)^3 +(-6)/(4!)(x-1)^4 +...
=x-1 -1/2(x-1)^2 +1/3(x-1)^3 -1/4(x-1)^4 +...
The Taylor series for the given function f(x)=ln(x) centered at c=1 will be:
ln(x) =x-1 -1/2(x-1)^2 +1/3(x-1)^3 -1/4(x-1)^4 +...
 or
ln(x) = sum_(n=1)^oo (-1)^(n+1)(x-1)^n/n

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...