Thursday, September 17, 2015

College Algebra, Chapter 9, 9.3, Section 9.3, Problem 58

Determine the sum of the infinite geometric series $\displaystyle \frac{1}{\sqrt{2}} + \frac{1}{2} + \frac{1}{2 \sqrt{2}} + \frac{1}{4} + .....$.

Using the formula $\displaystyle S = \frac{a}{1 - r}$, here $\displaystyle a = \frac{1}{\sqrt{2}}$ and $\displaystyle r = \frac{1}{\sqrt{2}}$.

Thus, the sum of this infinite series is


$
\begin{equation}
\begin{aligned}

S =& \frac{\displaystyle \frac{1}{\sqrt{2}}}{\displaystyle 1 - \frac{1}{\sqrt{2}}}
&&
\\
\\
S =& \frac{\displaystyle \frac{1}{\cancel{\sqrt{2}}}}{\displaystyle \frac{\sqrt{2} - 1}{\cancel{\sqrt{2}}}}
&& \text{Cancel out like terms}
\\
\\
S =& \frac{1}{\sqrt{2} - 1} \cdot \frac{\sqrt{2} + 1}{\sqrt{2} + 1}
&& \text{Multiply by the conjugate of the radical}
\\
\\
S =& \frac{\sqrt{2} + 1}{2 - 1}
&& \text{Simplify}
\\
\\
S =& \sqrt{2} + 1
&&

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...