Wednesday, September 23, 2015

Single Variable Calculus, Chapter 1, 1.3, Section 1.3, Problem 34

We need to find (a) $f \circ g$ , (b) $g \circ f $, (c) $f \circ f$ , and (d) $ g \circ g$ and state their domains

$f(x) = \sqrt{x} , \qquad g(x) = \sqrt[3]{1-x}$



$
\begin{equation}
\begin{aligned}

\text{(a)} \qquad \quad f \circ g &= f(g(x))\\

f(\sqrt[3]{1-x})&= \sqrt{x}
&& \text{ Substitute the given function $g(x)$ to the value of $x $ of the function $ f(x)$}\\
\displaystyle f(\sqrt[3]{1-x}) &= [(1-x)^{\frac{1}{3}}]^{\frac{1}{2}}
&& \text{ Simplify the equation}

\end{aligned}
\end{equation}
$



$\displaystyle \boxed{ f \circ g = (1-x)^{\frac{1}{6}} \text{ or } \sqrt[6]{1-x}} $


$\boxed{ \text{ The domain of this function is } (-\infty,1] }$



$
\begin{equation}
\begin{aligned}

\text{(b)} \qquad \quad g \circ f &= g(f(x)) \\

g(\sqrt{x}) &= \sqrt[3]{1-x}
&& \text{ Substitute the given function g(x ) to the value of x of the function f(x) }\\

\end{aligned}
\end{equation}
$


$\boxed{g \circ f = \sqrt[3]{1-\sqrt{x}}} $


$\boxed{\text{ The domain of this function is } [0,1]}$



$
\begin{equation}
\begin{aligned}
\text{(c)} \qquad \quad f \circ f &= f(f(x)) \\
f(\sqrt{x}) &= \sqrt{x}
&& \text{ Substitute the given function $g(x)$ to the value of $x$ of the function $f(x)$}\\

f(\sqrt{x}) &= [(x)^{\frac{1}{2}}]^{\frac{1}{2}}
&& \text{Simplify the equation}\\

\end{aligned}
\end{equation}
$


$\boxed{f \circ f = \sqrt[4]{x}} $


$\boxed{\text{ The domain of this function is } [0,\infty)} $



$
\begin{equation}
\begin{aligned}
\text{(d)} \qquad \quad g \circ g &= g(g(x)) \\
g(\sqrt[3]{1-x}) &= \sqrt[3]{1-x}
&& \text{ Substitute the given function $g(x)$ to the value of $x$ of the function $f(x)$ }

\end{aligned}
\end{equation}
$


$ \boxed{g \circ g=\sqrt[3]{1-\sqrt[3]{1-x}}} $


$\boxed{ \text{The domain of this function is } (-\infty, \infty)} $

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...