Friday, September 25, 2015

Single Variable Calculus, Chapter 5, 5.5, Section 5.5, Problem 40

Find the definite integral $\displaystyle \int^{\frac{1}{2}}_{\frac{1}{6}} \csc \pi t \cot \pi t dt$

Let $u = \pi t$, then $du = \pi dt$, so $\displaystyle dt = \frac{du}{\pi}$. When $\displaystyle t = \frac{1}{6}, u = \frac{\pi}{6}$ and when $\displaystyle t = \frac{1}{2}, u = \frac{\pi}{2}$. Thus,


$
\begin{equation}
\begin{aligned}

\int^{\frac{1}{2}}_{\frac{1}{6}} \csc \pi t \cot \pi t dt =& \int^{\frac{1}{2}}_{\frac{1}{6}} \csc u \cot u \frac{du}{\pi}
\\
\\
\int^{\frac{1}{2}}_{\frac{1}{6}} \csc \pi t \cot \pi t dt =& \frac{1}{\pi} \int^{\frac{1}{2}}_{\frac{1}{6}} \csc u \cot u du
\\
\\
\int^{\frac{1}{2}}_{\frac{1}{6}} \csc \pi t \cot \pi t dt =& \left. \frac{1}{\pi} (- \csc u) \right|^{\frac{1}{2}}_{\frac{1}{6}}
\\
\\
\int^{\frac{1}{2}}_{\frac{1}{6}} \csc \pi t \cot \pi t dt =& \frac{\displaystyle - \csc \frac{\pi}{2}}{\pi} - \frac{\displaystyle \left( - \csc \frac{\pi}{6} \right)}{\pi}
\\
\\
\int^{\frac{1}{2}}_{\frac{1}{6}} \csc \pi t \cot \pi t dt =& \frac{1}{\pi}


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...