Monday, November 2, 2015

College Algebra, Chapter 2, 2.1, Section 2.1, Problem 38

Plot the points $A(5,1), B(0,6)$ and $C(-5,1)$ on a coordinate plane. Where must the point $D$ be located so that the quadrilateral $ABCD$ is a square? Find the area of this square.

If the Quadrilateral $ABCD$ is a square, then $d_{AB} = d_{BC} = d_{CD} = d_{AD}$

By using distance formula,

$
\begin{equation}
\begin{aligned}
d_{AB} &= \sqrt{(6-1)^2 + (0-5)^2}\\
\\
&= \sqrt{5^2 + (-5)^2}\\
\\
&= \sqrt{25+25}\\
\\
&= \sqrt{50}\\
\\
&= 5\sqrt{2} \text{ units}\\
\\
d_{AB} &= \sqrt{(y-1)^2 + (x-5)^2} && \text{Distance of point } A(5,1) \text{ and } B(x,y)\\
\\
(d_{AD})^2 &= (y-1)^2 + (x-5)^2 && \text{Square both sides}\\
\\
(5\sqrt{2})^2 &= (y-1)^2 + (x-5)^2 && \text{Substitute } d_{AB} \text{ to } d_{AD}\\
\\
(y-1)^2 &= 50 - (x-5)^2\\
\\
d_{CD} &= \sqrt{(x-(-5))^2 + (y-1)^2} && \text{Distance of point } C(-5,1) \text{ and } D(x,y)\\
\\
(d_{CD})^2 &= (x+5)^2 + (y-1)^2 && \text{Square both sides}\\
\\
(5\sqrt{2})^2 &= (x+5)^2 + (y-1)^2 && \text{Substitute } d_{AB} \text{ to } d_{CD}\\
\\
50 &= (x+5)^2 + \left[50 - (x-5)^2 \right] && \text{Substitute } (y-1)^2 \text{ from } d_{AD}\\
\\
0 &= (x+5)^2 - (x-5)^2 && \text{Subtract to } 50\\
\\
0 &= x^2 + 10x + 25 - x^2 + 10x - 25 && \text{Expand} \\
\\
0 &= 20x && \text{Combine like terms}\\
\\
0 &= x && \text{Solve for } x
\end{aligned}
\end{equation}
$


If $x=0$, then

$
\begin{equation}
\begin{aligned}
(y-1)^2 &= 50-(0-5)^2\\
\\
(y-1)^2 &= 50-25\\
\\
(y-1)^2 &= 25\\
\\
y -1 &= \pm 5\\
\\
y &= \pm 5 + 1\\
\\
y &= 6 \text{ and } y = -4
\end{aligned}
\end{equation}
$

The point $(0,6)$ is already $B$. Therefore, point $D$ is $(0,-4)$
Thus, the area of the square $ABCD$ is $A = \left( d_{AB} \right)^2 = \left( 5\sqrt{2} \right)^2 = 50$ square units.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...