Sunday, December 6, 2015

Calculus: Early Transcendentals, Chapter 7, 7.3, Section 7.3, Problem 27

intsqrt(x^2+2x)dx
Let's rewrite the integrand by completing the square for x^2+2x ,
=intsqrt((x+1)^2-1)dx
Now apply integral substitution,
Let u=x+1,
=>du=1dx
=intsqrt(u^2-1)du
Now again apply the integral substitution,
Let u=sec(v),
=>du=sec(v)tan(v)dv
=intsqrt(sec^2(v)-1)sec(v)tan(v)dv
Now use the identity: sec^2(x)=1+tan^2(x)
=intsqrt(1+tan^2(v)-1)sec(v)tan(v)dv
=intsqrt(tan^2(v))sec(v)tan(v)dv
assuming tan(v)>=0,sqrt(tan^2(v))=tan(v)
=inttan^2(v)sec(v)dv
Using the identity: tan^2(x)=sec^2(x)-1
=int(sec^2(v)-1)sec(v)dv
=int(sec^3(v)-sec(v))dv
Apply the sum rule,
=intsec^3(v)dv-intsec(v)dv
Now let's evaluate the first integral by applying the integral reduction,
intsec^n(x)=(sec^(n-1)(x)sin(x))/(n-1)+(n-2)/(n-1)intsec^(n-2)(x)dx
intsec^3(v)dv=(sec^2(v)sin(v))/2+(3-2)/(3-1)intsec(v)dv
intsec^3(v)dv=(sec^2(v)sin(v))/2+1/2intsec(v)dv
Now use the common integral: intsec(x)dx=ln|sec(x)+tan(x)|
intsec^3(v)dv=(sec^2(v)sin(v))/2+1/2(ln|sec(v)+tan(v)|)
Now plug back the above integral and the common integral,
=(sec^2(v)sin(v))/2+1/2(ln|sec(v)+tan(v)|)-ln|sec(v)+tan(v)|
=(sec^2(v)sin(v))/2-1/2(ln|sec(v)+tan(v)|)
=sin(v)/(2cos^2(v))-1/2(ln|sec(v)+tan(v)|)
=(sec(v)tan(v))/2-1/2(ln|sec(v)+tan(v)|)
Now substitute back: u=sec(v). u=(x+1)
=>v=arcsec(u)
=>v=arcsec(x+1)
=(sec(arcsec(x+1))tan(arcsec(x+1)))/2-1/2(ln|sec(arcsec(x+1))+tan(arcsec(x+1))|)
Now tan(arcsec(x+1))=sqrt((x+1)^2-1)
=((x+1)sqrt((x+1)^2-1))/2-1/2(ln|(x+1)+sqrt((x+1)^2-1)|) + C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...