Friday, December 25, 2015

Calculus of a Single Variable, Chapter 5, 5.7, Section 5.7, Problem 39

Recall that int_a^b f(x) dx = F(x)|_a^b :
f(x) as the integrand function
F(x) as the antiderivative of f(x)
"a" as the lower boundary value of x
"b" as the upper boundary value of x
To evaluate the given problem: int_2^3 (2x-3)/sqrt(4x-x^2)dx , we need to determine the
indefinite integral F(x) of the integrand: f(x)=(2x-3)/sqrt(4x-x^2) .
We apply completing the square on 4x-x^2 .
Factor out (-1) from 4x-x^2 to get (-1)(x^2-4x)
The x^2-4x or x^2-4x+0 resembles ax^2+bx+c where:
a= 1 and b =-4 that we can plug-into (-b/(2a))^2 .
(-b/(2a))^2= (-(-4)/(2*1))^2
= (4/2)^2
= 2^2
=4
To complete the square, we add and subtract 4 inside the ():
(-1)(x^2-4x) =(-1)(x^2-4x+4 -4)
Distribute (-1) in "-4" to move it outside the ().
(-1)(x^2-4x+4 -4) =(-1)(x^2-4x+4) + (-1)(-4)
=(-1)(x^2-4x+4) + 4
Apply factoring for the perfect square trinomial: x^2-4x+4 = (x-2)^2
(-1)(x^2-4x+4) + 4 =-(x-2)^2 + 4
= 4-(x-2)^2

which means 4x-x^2=4-(x-2)^2
Applying it to the integral:
int_2^3 (2x-3)/sqrt(4x-x^2)dx =int_2^3 (2x-3)/sqrt(4-(x-2)^2)dx
To solve for the indefinite integral of int (2x-3)/sqrt(4-(x-2)^2)du ,
let u =x-2 then x = u+2 and du= dx .
Apply u-substitution , we get:
int (2x-3)/sqrt(4-(x-2)^2)dx= int (2(u+2)-3)/sqrt(4-u^2)du
=int (2u+4-3)/sqrt(4-u^2)du
=int (2u+1)/sqrt(4-u^2)du
Apply the basic integration property: int (u+v) dx = int (u) dx + int (v) dx .
int (2u+1)/sqrt(4-u^2)du =int (2u)/sqrt(4-u^2)du +int1/sqrt(4-u^2)du
For the integration of the first term: int (2u)/sqrt(4-u^2)du ,
let v = 4-u^2 then dv = -2u du or -dv = 2u du then it becomes:
int (2u)/sqrt(4-u^2)du =int (-1)/sqrt(v)dv
Applying radical property: sqrt(x) = x^(1/2) and Law of exponent: 1/x^n = x^-n , we get:
(-1)/sqrt(v) =(-1)/v^(1/2)

Then,
int (-1)/sqrt(v)dv =int(-1)v^(-1/2) dv
Applying Power Rule of integration: int x^n dx = x^(n+1)/(n+1)
int (-1)v^(-1/2) dv = (-1)v^(-1/2+1)/(-1/2+1)
=(-1)v^(1/2)/(1/2)
=(-1)v^(1/2)*(2/1)
=-2v^(1/2)
= -2sqrt(v)
Recall v =4-u^2 then-2sqrt(v)=-2sqrt(4-u^2) .
Then,
int (2u)/sqrt(4-u^2)du =-2sqrt(4-u^2)

For the integration of the second term: int1/sqrt(4-u^2)du ,
we apply the basic integration formula for inverse sine function:
int 1/sqrt(a^2-u^2) du = arcsin(u/a)
Then,
int1/sqrt(4-u^2)du=int1/sqrt(2^2-u^2)du
= arcsin(u/2)
For the complete indefinite integral, we combine the results as:
int (2u+1)/sqrt(4-u^2)du =-2sqrt(4-u^2) +arcsin(u/2)
Then plug-in u=x-2 to express it terms of x, to solve for F(x) .
F(x) =-2sqrt(4-(x-2)^2) +arcsin((x-2)/2)
For the definite integral, we applying the boundary values: a=2 and b=3 in F(x)|_a^b= F(b) - F(a) .
F(3) -F(2) = [-2sqrt(4-(3-2)^2) +arcsin((3-2)/2)] -[-2sqrt(4-(2-2)^2) +arcsin((2-2)/2)]
=[-2sqrt(4-(1)^2) +arcsin(1/2)] -[-2sqrt(4-(0)^2) +arcsin(0/2)]
=[-2sqrt(3) +arcsin(1/2)] -[-2sqrt(4) +arcsin(0)]
=[-2sqrt(3) +pi/6] -[-2*(2)+0]
=[-2sqrt(3) +pi/6] -[-4]
=-2sqrt(3) +pi/6 + 4

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...