Tuesday, December 22, 2015

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 85

a.) Show that $\displaystyle \frac{d}{dx} (\sin ^n x \cos nx) = n \sin^{n - 1} x \cos (n + 1) x$

Suppose $n$ is an integer.

Using Chain Rule,


$
\begin{equation}
\begin{aligned}

\frac{d}{dx} (\sin^n x \cos n x) =& \frac{d}{dx} (\sin^n x) \cdot \cos n x + \sin^n x \cdot \frac{d}{dx} (\cos n x)
\\
\\
\frac{d}{dx} (\sin^n x \cos n x) =& n \sin ^{n - 1} x \cos x \cdot \cos n x + \sin^n x \cdot (- \sin (nx)) (n)
\\
\\
\frac{d}{dx} (\sin^n x \cos n x) =& n \sin ^{n-1} x (\cos x \cos (nx) - \sin x \sin (nx))

& \text{Using the sum of the angles for cosine..}
\\
\\
& \cos (A + B) = \cos A \cos B - \sin A \sin B
\\
\\
\frac{d}{dx} (\sin^n x \cos n x) =& n \sin^{n - 1} x (\cos (x + nx))
\\
\\
\frac{d}{dx} (\sin^n x \cos n x) =& n \sin^{n - 1} x (\cos x (1 + n))
\\
\\
\frac{d}{dx} (\sin^n x \cos n x) =& n \sin^{n - 1} x [\cos (n + 1)x]
\end{aligned}
\end{equation}
$




b.) Find a formula for the derivative of $y =\cos^n x$ that is similar to the one in part (a).

Using Chain Rule,


$
\begin{equation}
\begin{aligned}

\frac{d}{dx} (\cos^n x \cos nx) =& \frac{d}{dx} (\cos ^n x) \cdot \cos n x + \cos ^n x \cdot \frac{d}{dx} (\cos n x)
\\
\\
\frac{d}{dx} (\cos^n x \cos nx) =& n \cos ^{n - 1} x (-\sin x) \cdot \cos n z + \cos^n x \cdot (- \sin nx)(n)
\\
\\
\frac{d}{dx} (\cos^n x \cos nx) =& -n \cos^{n - 1} x (\sin x \cos (nx) + \cos x \sin (nx))
\\
\\
& \text{Using the sum of angles for sine}
\\
\\
& \sin(A + B) = \sin A \cos B + \cos A \sin B
\\
\\
\frac{d}{dx} (\cos^n x \cos nx) =& - n \cos^{n - 1} x [\sin (x + n x)]
\\
\\
\frac{d}{dx} (\cos^n x \cos nx) =& -n \cos^{n - 1} x [\sin (1 + n) x]
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...