Friday, December 11, 2015

int e^xsqrt(1-e^(2x)) dx Find the indefinite integral

Recall that indefinite integral follows the formula: int f(x) dx = F(x) +C
 where: f(x) as the integrand
           F(x) as the anti-derivative function 
           C  as the arbitrary constant known as constant of integration
For the given problem int e^xsqrt(1-e^(2x))dx , it resembles one of the formula from integration table.  We may apply the integral formula for function with roots as:
int sqrt(a^2-u^2)du = 1/2u*sqrt(a^2-u^2)+1/2a^2arctan(u/sqrt(a^2-u^2))+C
For easier comparison, we may apply u-substitution by letting u =e^x then du =e^x dx or (du)/e^x = dx .
Note that u= e^x then  (du)/e^x = dx  becomes  (du)/u = dx
Plug-in the values on the integral problem, we get:
int e^xsqrt(1-e^(2x))dx=int usqrt(1-u^2)*(du)/u
                              = intsqrt(1-u^2)du
Apply aforementioned integral formula for function with roots where a^2=1  , we get:
intsqrt(1-u^2)du =1/2u*sqrt(1-u^2)+1/2*1*arctan(u/sqrt(1-u^2))+C
                  =1/2usqrt(1-u^2)+1/2arctan(u/sqrt(1-u^2))+C
Plug-in u = e^x on 1/2usqrt(1-u^2)+1/2arctan(u/sqrt(1-u^2))+C , we get the indefinite integral as:
int e^xsqrt(1-e^(2x))dx=1/2e^xsqrt(1-(e^x)^2)+1/2arctan(e^x/sqrt(1-(e^x)^2))+C
                            =1/2e^xsqrt(1-e^(2x))+1/2arctan(e^x/sqrt(1-e^(2x)))+C
                           =(e^xsqrt(1-e^(2x)))/2+arctan(e^x/sqrt(1-e^(2x)))/2+C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...