Monday, December 14, 2015

College Algebra, Chapter 4, 4.6, Section 4.6, Problem 10

If $\displaystyle r(x) = \frac{3x^2 + 1}{(x - 2)^2}$, then (a) Complete each table for the function. (b) Describe the behavior of the function near its vertical asymptote, based on Tables 1 and 2. (c) Determine the horizontal asymptote, based on Tables 3 and 4.

Table 1

$\begin{array}{|c|c|}
\hline\\
x & r(x) \\
\hline\\
1.5 & \\
\hline\\
1.9 & \\
\hline\\
1.99 & \\
\hline\\
1.999 & \\
\hline
\end{array} $

Table 2

$\begin{array}{|c|c|}
\hline\\
x & r(x) \\
\hline\\
2.5 & \\
\hline\\
2.1 & \\
\hline\\
2.01 & \\
\hline\\
2.001 & \\
\hline
\end{array} $

Table 3

$\begin{array}{|c|c|}
\hline\\
x & r(x) \\
\hline\\
10 & \\
\hline\\
50 & \\
\hline\\
100 & \\
\hline\\
1000 & \\
\hline
\end{array} $

Table 4

$\begin{array}{|c|c|}
\hline\\
x & r(x) \\
\hline\\
-10 & \\
\hline\\
-50 & \\
\hline\\
-100 & \\
\hline\\
-1000 & \\
\hline
\end{array} $


a.)

$\begin{array}{|c|c|c|c|}
\hline\\
\text{Table 1} & & \text{Table 2} & \\
\hline\\
x & r(x) & x & r(x) \\
\hline\\
1.5 & 31 & 2.5 & 79 \\
\hline\\
1.9 & 1183 & 2.1 & 1423 \\
\hline\\
1.99 & 128803 & 2.01 & 131203 \\
\hline\\
1.999 & 12988003 & 2.001 & 13012003\\
\hline
\end{array} $

b.) Based from the values obtained in the table, $r(x)$ approaches a
very big number of $x$ approaches 2 from either left or right side. It
means that $r(x)$ has a vertical asymptote at $x = 2$.

c.)

$\begin{array}{|c|c|c|c|}
\hline\\
\text{Table 3} & & \text{Table 4} & \\
\hline\\
x & r(x) & x & r(x) \\
\hline\\
10 & 4.7031 & -10 & 2.0903 \\
\hline\\
50 & 3.2556 & -50 & 2.7740 \\
\hline\\
100 & 3.1238 & -100 & 2.8836 \\
\hline\\
1000 & 3.0120 & -1000 & 2.9880 \\
\hline
\end{array} $

It shows from the table that $r(x)$ approaches 3 from either left or
right side as $x$ approaches a very big number. It means that $r(x)$
has a horizontal asymptote at $y = 3$.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...