Thursday, June 1, 2017

Calculus: Early Transcendentals, Chapter 7, Chapter Review, Section Review, Problem 28

int (root(3)(x)+1)/(root(3)(x)-1) dx
The above indefinite integral can be rewritten as:
= int ((root(3)(x)+1-(root(3)(x)-1))/(root(3)(x)-1)+1) dx
Applying the sum rule:
= int 2/(root(3)(x)-1) dx + int 1 dx
Let u=root(3)(x), du=1/(3x^(2/3)) dx, dx=3x^(2/3) du
= 2 int (3x^(2/3))/(u-1) du + int dx
Again, u=root(3)(x) => x= u^3
= 2 int (3u^2)/(u-1) du + int dx
= 2.3 int (u+1/(u-1)+1) du + int dx
Again applying the sum rule:
=6(u^2/2+ln(u-1)+u)+x+C
Substituting back u=root(3)(x) ,
=6(x^(2/3)/2+ln(root(3)(x)-1)+root(3)(x))+x+C
Therefore, the answer is 6(x^(2/3)/2+ln(root(3)(x)-1)+root(3)(x))+x+C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...