Sunday, June 11, 2017

int x^2sqrt(2+9x^2) dx Use integration tables to find the indefinite integral.

Recall that indefinite integral follows int f(x) dx = F(x) +C
where:
f(x) as the integrand function
F(x) as the antiderivative of f(x)
C as the constant of integration.
The given integral problem: int x^2sqrt(2+9x^2) dx resembles one of the formulas from the integration table. We follow the integral formula for function with roots as:
int u^2sqrt(a^2+u^2)du = u/8(a^2+2u^2)sqrt(a^2+u^2) -a^4/8ln|u+sqrt(a^2+u^2)| +C .
For easier comparison, we apply u-substitution by letting:
u^2 = 9x^2 or (3x)^2
then u = 3x  or x=u/3 .
For the derivative of u, we get: du = 3 dx or (du)/3 = dx .
Note: The corresponding value of a^2=2
then a =sqrt(2) and   a^4 = (a^2)^2 =2^2 =4
Plug-in the values of u = 3x , x=u/3 and (du)/3 = dx , we get:
int x^2sqrt(2+9x^2)dx=int (u/3)^2sqrt(2+u^2)* (du)/3
                                  =int u^2/9*sqrt(2+u^2)* (du)/3
                                  =int u^2/27sqrt(2+u^2)du
Apply the basic integration property: int c*f(x) dx = c int f(x) dx .
int u^2/27*sqrt(2+u^2)*du =1/27int u^2sqrt(2+u^2)du
Apply the aforementioned integral formula with a^2 =2 , we get:
1/27 int u^2sqrt(2+u^2)du=1/27*[u/8(2+2u^2)sqrt(2+u^2) -4/8ln|u+sqrt(2+u^2)|]+C
                      = u/216(2+2u^2)sqrt(2+u^2) -1/2ln|u+sqrt(2+u^2)|+C
Plug-in u =3x on  u/216(2+2u^2)sqrt(2+u^2) -1/2ln|u+sqrt(2+u^2)|+C , we get the indefinite integral as:
int x^2sqrt(2+9x^2) dx=(3x)/216(2+2(3x)^2)sqrt(2+(3x)^2) -1/2ln|3x+sqrt(2+(3x)^2)|+C
                                  = x/72(2+18x^2)sqrt(2+9x^2) -1/2ln|3x+sqrt(2+9x^2)|+C
                                  = ((2x+18x^3)sqrt(2+9x^2))/72 -(ln|3x+sqrt(2+9x^2)|)/2+C
                                  or (xsqrt(2+9x^2))/36+(x^3sqrt(2+9x^2))/4 -(ln|3x+sqrt(2+9x^2)|)/2+C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...