Sunday, June 11, 2017

Calculus: Early Transcendentals, Chapter 7, 7.1, Section 7.1, Problem 40

You need to use the substitution cos t = u , such that:
cos t = u => -sin t dt = du => sin t dt = -du
Replacing the variable, yields:
int_0^pi e^(cos t)*sin (2t)dt = 2int_0^pi e^(cos t)*sin t*cos t dt
2int_0^pi e^(cos t)*sin t*cos t dt = -2int_(u_1)^(u_2) u*e^u*du
You need to use the integration by parts such that:
int fdg = fg - int gdf
f = u => df = du
dg = e^u => g = e^u
-2int_(u_1)^(u_2) u*e^u*du = -2u*e^u|_(u_1)^(u_2) + 2int_(u_1)^(u_2) e^u du
-2int_(u_1)^(u_2) u*e^u*du = (-2u*e^u + 2e^u)|_(u_1)^(u_2)
Replacing back the variable, yields:
int_0^pi e^(cos t)*sin (2t)dt = (-2cos t*e^(cos t) + 2e^(cos t))|_0^(pi)
Using the fundamental theorem of integration, yields:
int_0^pi e^(cos t)*sin (2t)dt = (-2cos pi*e^(cos pi) + 2e^(cos pi) + 2cos 0*e^(cos 0) - 2e^(cos 0))
int_0^pi e^(cos t)*sin (2t)dt = (2e^(-1) + 2e^(-1) + 2e - 2e)
int_0^pi e^(cos t)*sin (2t)dt = 4/e
Hence, evaluating the integral, using substitution, then integration by parts, yields int_0^pi e^(cos t)*sin (2t)dt = 4/e.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...