Monday, June 5, 2017

Single Variable Calculus, Chapter 5, 5.5, Section 5.5, Problem 80

Find the integral $\displaystyle \int^1_0 xe^{-x^2} dx$

If we let $u = -x^2 $, then $\displaystyle du = -2x dx$, so $\displaystyle xdx = \frac{-du}{2}$. When $x = 0, u =0$ and when $x = 1, u =-1$. Therefore,



$
\begin{equation}
\begin{aligned}

\int^1_0 xe^{-x^2} dx =& \int^1_0 e^{-x^2} x dx
\\
\\
\int^1_0 xe^{-x^2} dx =& \int^1_0 e^u \cdot \frac{-du}{2}
\\
\\
\int^1_0 xe^{-x^2} dx =& \frac{-1}{2} \int^1_0 e^u du
\\
\\
\int^1_0 xe^{-x^2} dx =& \frac{-1}{2} [e^u]^1_0
\\
\\
\int^1_0 xe^{-x^2} dx =& \frac{-1}{2} [e^{-1} - e^0]
\\
\\
\int^1_0 xe^{-x^2} dx =& \frac{-1}{2} \left( \frac{1}{e} - 1 \right)
\\
\\
\int^1_0 xe^{-x^2} dx =& \frac{-1}{2} \left( \frac{1 - e}{e} \right)
\\
\\
\int^1_0 xe^{-x^2} dx =& \frac{e - 1}{2e}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...