Friday, December 8, 2017

College Algebra, Chapter 3, 3.1, Section 3.1, Problem 36

Given the function $f(x) = x^2 +1$. Find $f(a)$, $f(a+h)$ and the difference quotient $\displaystyle \frac{f(a+h) - f(a)}{h}$ where $h \neq 0$
For $f(a)$
$f(a) = a^2 +1 $ Replace $x$ by $a$

For $f(a+h)$

$
\begin{equation}
\begin{aligned}
f(a+h) &= (a+h)^2 + 1 && \text{Replace } x \text{ by } (a+h)\\
\\
&= a^2 + 2ah + h^2 +1
\end{aligned}
\end{equation}
$


For $\displaystyle \frac{f(a+h)-f(a)}{h}$

$
\begin{equation}
\begin{aligned}
\frac{f(a-h)-f(a)}{h} &= \frac{(a+h)^2 + 1 - (a^2 + 1)}{h}\\
\\
&= \frac{a^2 + 2ah + h^2 + 1 - a^2 - 1}{h} && \text{Combine like terms}\\
\\
&= \frac{2ah + h^2}{h} && \text{Factor out } h \text{ from each term}\\
\\
&= \frac{\cancel{h}(2a + h)}{\cancel{h}} && \text{Cancel common factor}\\
\\
&= 2a + h
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...