Tuesday, December 19, 2017

int e^(4x)cos(2x) dx Find the indefinite integral

int e^(4x)cos(2x)dx
To solve, apply integration by parts int u dv = u*v - int vdu .
In the given integral, the let the u and dv be:

u = e^(4x)  
dv = cos(2x)dx

Then, take the derivative of u to get du. Also, take the integral of dv to get v.

du = e^(4x)*4dx
du = 4e^(4x)dx
intdv = int cos(2x)dx
v = (sin(2x))/2

Substituting them to the integration by parts formula yields
int e^(4x)cos(2x)dx= e^(4x)*(sin(2x))/2 - int (sin(2x))/2 * 4e^(4x)dx
int e^(4x)cos(2x)dx= (e^(4x)sin(2x))/2 - int 2e^(4x)sin(2x)dx
For the integral at the right side, apply integration by parts again. Let the u and dv be:

u = 2e^(4x)
dv = sin(2x)dx

Take the derivative of u and take the integral of dv to get du and v, respectively.

du = 2e^(4x)*4dx
du = 8e^(4x)dx
int dv = int sin(2x)dx
v = -cos(2x)/2

Plug-in them to the formula of integration by parts.
int e^(4x)cos(2x)dx= (e^(4x)sin(2x))/2 - int 2e^(4x)sin(2x)dx
int e^(4x)cos(2x)dx= (e^(4x)sin(2x))/2 - [2e^(4x)*(-(cos(2x))/2) - int (-(cos(2x))/2)*8e^(4x)dx]
int e^(4x)cos(2x)dx= (e^(4x)sin(2x))/2 - [-e^(4x)cos(2x)+int 4e^(4x)cos(2x)dx]
int e^(4x)cos(2x)dx= (e^(4x)sin(2x))/2 +e^(4x)cos(2x) - 4int e^(4x)cos(2x)dx
Since the integrals at the left and right side of the equation are like terms, bring them together on one side.
int e^(4x)cos(2x)dx+4int e^(4x)cos(2x)dx= (e^(4x)sin(2x))/2 +e^(4x)cos(2x)
The left side simplifies to
5int e^(4x)cos(2x)dx= (e^(4x)sin(2x))/2 +e^(4x)cos(2x)
Isolating the integral, the equation becomes
int e^(4x)cos(2x)dx= ((e^(4x)sin(2x))/2 +e^(4x)cos(2x)) * 1/5
int e^(4x)cos(2x)dx= (e^(4x)sin(2x))/10 +(e^(4x)cos(2x))/5
Since it is an indefinite integral, add C at the right side.
Therefore, 
int e^(4x)cos(2x)dx= (e^(4x)sin(2x))/10 +(e^(4x)cos(2x))/5+C .

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...