Friday, December 22, 2017

int_(-oo)^o e^(3x) dx Explain why the integral is improper and determine whether it diverges or converges. Evaluate the integral if it converges

Any integral with infinite bounds is an improper integral therefore this is an improper integral.
int_-infty^0 e^(3x) dx=
Substitute u=3x => du=3dx, u_l=3cdot(-infty)=-infty, u_u=3cdot0=0.  
1/3int_-infty^0 e^udu=1/3 e^u|_-infty^0=1/3(e^0-lim_(u to -infty)e^u)=
1/3(1-0)=1/3
As we can see, the integral converges and its value is equal to 1/3.
The image below shows the graph of the function and area under it corresponding to the integral. We can see that  as x goes to minus infinity the function converges to zero and it does so "very fast" (exponentially to be more specific). Therefore, it should be no surprise that the above integral is a convergent one.
https://en.wikipedia.org/wiki/Improper_integral

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...