Monday, February 19, 2018

Calculus: Early Transcendentals, Chapter 4, 4.4, Section 4.4, Problem 65

You need to evaluate the limit, hence, you need to replace 0^+ for x:
lim_(x->0^+) (cos x)^(1/(x^2)) = (cos 0)^(1/0^+) = 1^(+oo)
You may use the special limit lim_(x->0^+) (1 + x)^(1/x) = e , instead of l'Hospital's rule, such that:
lim_(x->0^+) (cos x)^(1/(x^2)) = lim_(x->0^+) ((1 + cos x - 1)^(1/(cos x - 1)))^((cos x - 1)/(x^2)) = e^lim_(x->0^+)((cos x - 1)/(x^2))
Evaluate the limit of exponent, such that:
lim_(x->0^+)((cos x - 1)/(x^2)) = (cos 0 - 1)/(0^2) = 0/0
You may use l'Hospital's rule for indetermination 0/0 , such that:
lim_(x->0^+)((cos x - 1)')/((x^2)') = lim_(x->0^+)(-sin x)/(2x) = -(sin0)/0 = 0/0
You may use again l'Hospital's rule for indetermination 0/0 , such that:
lim_(x->0^+)(-sin x)/(2x) = lim_(x->0^+)((-sin x)')/((2x)')
lim_(x->0^+)((-sin x)')/((2x)') = lim_(x->0^+)(-cos x)/2 = (-cos 0)/2 = -1/2
Hence, evaluating the limit, using special limit and l'Hospital's rule, yields lim_(x->0^+) (cos x)^(1/(x^2)) = 1/(sqrt e).

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...