Tuesday, February 6, 2018

Single Variable Calculus, Chapter 7, 7.7, Section 7.7, Problem 18

Show that $\displaystyle \frac{1 + \tan hx}{1 - \tan hx} = e^{2x}$

Solving for the left-hand side of the equation

Using Hyperbolic Function


$
\begin{equation}
\begin{aligned}

\tan hx =& \frac{\sin hx}{\cos hx} = \frac{e^x - e^{-x}}{e^x + e^{-x}}
\\
\\
\frac{1 + \tan hx}{1 - \tan hx} =& \frac{\displaystyle 1 + \frac{\sin hx}{\cos hx}}{\displaystyle 1 - \frac{\sin hx}{\cos hx}}
\\
\\
\frac{1 + \tan hx}{1 - \tan hx} =& \frac{\displaystyle \frac{\cos hx + \sin hx}{\cancel{\cos hx}}}{\displaystyle \frac{\cos hx - \sin hx}{\cancel{\cos hx}}}
\\
\\
\frac{1 + \tan hx}{1 - \tan hx} =& \frac{\cos hx + \sin hx}{\cos hx - \sin hx}

\end{aligned}
\end{equation}
$


By Hyperbolic Identities


$
\begin{equation}
\begin{aligned}

& \cos hx + \sin hx = e^x \text{ and } \cos hx - \sin hx = e^{-x}
\\
\\
& \frac{1 + \tan hx}{1 - \tan hx} = \frac{e^x}{e^{-x}}
\\
\\
& \frac{1 + \tan hx}{1 - \tan hx} = \frac{e^x}{\displaystyle \frac{1}{e^x}}
\\
\\
& \frac{1 + \tan hx}{1 - \tan hx} = e^x \cdot e^x
\\
\\
& \frac{1 + \tan hx}{1 - \tan hx} = e^{2x}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...