Wednesday, May 9, 2018

Calculus: Early Transcendentals, Chapter 4, 4.4, Section 4.4, Problem 66

Replacing oo for x in limit equation yields the nedetermination oo^oo . You need to use the following technique, such that:
f(x) = ((2x - 3)/(2x + 5))^(2x + 1)
lim_(x->oo) ((2x - 3)/(2x + 5))^(2x + 1) = lim_(x->oo) ((2x + 5 - 5 - 3)/(2x + 5))^(2x + 1)
lim_(x->oo) ((2x + 5)/(2x + 5) - 8/(2x + 5))^(2x + 1)
lim_(x->oo) (1 + (- 8)/(2x + 5))^(2x + 1)
Since lim_(x->oo) (- 8)/(2x + 5) = -8/oo = 0, yields:
lim_(x->oo) (1 + (- 8)/(2x + 5))^(2x + 1) = 1^oo
You need to remember that lim_(x->oo) (1 + 1/x)^x = e , hence, you need to re-create the special limit:
lim_(x->oo) ((1 + (-8)/(2x+5))^((2x+5)/(-8)))^(-8(2x+1)/(2x+5))
You need to notice that lim_(x->oo)(1+1/x)^x = oo , such that:
lim_(x->oo)((1 + (-8)/(2x+5))^(((2x+5)/(-8))))^(-8(2x+1)/(2x+5)) = e^lim_(x->oo) (-8(2x+1)/(2x+5))
You need to evaluate lim_(x->oo)(- 8)*(2x+1)/(2x + 5) :
lim_(x->oo)(- 8)*(2x+1)/(2x + 5) = -8*lim_(x->oo)(2x+1)/(2x + 5) = -8*(2/2) = -8
e^lim_(x->oo)(- 8)*(2x+1)/(2x + 5) = e^(-8)
Hence, evaluating the given limit, using special limit, yields lim_(x->oo) ((2x - 3)/(2x + 5))^(2x + 1) = 1/(e^8).

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...