Wednesday, May 16, 2018

Calculus of a Single Variable, Chapter 9, 9.9, Section 9.9, Problem 6

To determine the power series centered at c, we may apply the formula for Taylor series:
f(x) = sum_(n=0)^oo (f^n(c))/(n!) (x-c)^n
or
f(x) =f(c)+f'(c)(x-c) +(f''(c))/(2!)(x-c)^2 +(f^3(c))/(3!)(x-c)^3 +(f'^4(c))/(4!)(x-c)^4 +...
To list the f^n(x) for the given function f(x)=2/(6-x) centered at c=-2 , we may apply Law of Exponent: 1/x^n = x^-n and Power rule for derivative: d/(dx) x^n= n *x^(n-1) .
f(x) =2/(6-x)
=2(6-x)^(-1)
Let u =6-x then (du)/(dx) = -1
d/(dx) c*(6-x)^n = c *d/(dx) (6-x)^n
= c *(n* (6-x)^(n-1)*(-1)
= -cn(6-x)^(n-1)
f'(x) =d/(dx)2(6-x)^(-1)
=-2*(-1)(6-x)^(-1-1)
=2(6-x)^(-2) or 2/(6-x)^2
f^2(x) =d/(dx) 2(6-x)^(-2)
=-2(-2)(6-x)^(-2-1)
=4(6-x)^(-3) or 4/(6-x)^3
f^3(x) =d/(dx)4(6-x)^(-3)
=-4(-3)(6-x)^(-3-1)
=12(6-x)^(-4) or 12/(6-x)^4
f^4(x) =d/(dx)12(6-x)^(-4)
=-12(-4)(6-x)^(-4-1)
=48(6-x)^(-5) or 48/(6-x)^5
Plug-in x=-2 for each f^n(x) , we get:
f(-2)=2/(6-(-2))
=2/ 8
=1/4
f'(-2)=2/(6-(-2))^2
=2/8^2
= 1/32
f^2(-2)=4/(6-(-2))^3
=4/8^3
=1/128
f^3(-2)=12/(6-(-2))^4
=12/8^4
= 3/1024
f^4(-2)=48/(6-(-2))^5
=48/8^5
= 3/2048
Plug-in the values on the formula for Taylor series, we get:
2/(6-x) = sum_(n=0)^oo (f^n(-2))/(n!) (x-(-2))^n
= sum_(n=0)^oo (f^n(-2))/(n!) (x+2)^n
=1/4+1/32(x+2) +(1/128)/(2!)(x+2)^2 +(3/1024)/(3!)(x+2)^3 +(3/2048)/(4!)(x+2)^4 +...
=1/4+1/32(x+2) +(1/128)/2(x+2)^2 +(3/1024)/6(x+2)^3 +(3/2048)/24(x+2)^4 +...
=1/4+1/32(x+2) + 1/256(x+2)^2 +1/2048(x+2)^3 + 1/16384(x+2)^4 +...
=1/2^2+1/2^5(x+2) + 1/2^8(x+2)^2 +1/2^11(x+2)^3 + 1/2^14(x+2)^4 +...
=sum_(n=1)^oo (x+2)^(n-1)/2^(3n-1)
=sum_(n=1)^oo( (x+2)^n*(x+2)^(-1))/(2^(3n)2^(-1))
=sum_(n=1)^oo (2(x+2)^n)/(2^(3n)(x+2))
=sum_(n=1)^oo (2/(x+2))((x+2)/2^3)^n
=sum_(n=1)^oo (2/(x+2))((x+2)/8)^n
Note: Exponents of 2 as 2,5,8,11,14,... follows arithmetic sequence a_n=a_0+(n-1)d.
a_n = 2 +(n-1)3
=2+3n-3
=3n-1
To determine the interval of convergence, we may apply geometric series test wherein the series sum_(n=0)^oo a*r^n is convergent if |r|lt1 or -1 ltrlt 1 . If |r|gt=1 then the geometric series diverges.
By comparing sum_(n=1)^oo (2/(x+2))((x+2)/8)^n with sum_(n=0)^oo a*r^n , we determine: r = (x+2)/8.
Apply the condition for convergence of geometric series: |r|lt1 .
|((x+2)/8)|lt1
-1lt(x+2)/8lt1
Multiply each sides by 8:
-1*8lt(x+2)/8*8lt1*8
-8ltx+2lt8
Subtract 2 from each sides:
-8-2ltx+2-2lt8-2
-10ltxlt6
Thus, the power series of the function f(x) = 2/(6-x) centered at c=-2 is sum_(n=1)^oo (x+2)^(n-1)/2^(3n-1) with an interval of convergence: -10ltxlt6 .

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...