Tuesday, June 5, 2018

College Algebra, Chapter 7, 7.2, Section 7.2, Problem 38

Find $x$ and $y$ if $\displaystyle
\left[ \begin{array}{cc}
x & y \\
-y & x
\end{array} \right] -
\left[ \begin{array}{cc}
y & x \\
x & -y
\end{array} \right]
=
\left[ \begin{array}{cc}
4 & -4 \\
-6 & 6
\end{array} \right]$

Since the matrices are equal, corresponding entries must be the same. So we must have $x - y = 4, y - x = -4, -y - x = -6$ and $x + y = 6$.

We notice that the equations in first row are equal, also in the second row. Now we use

$x - y = 7$ and $x + y = 6 $ to solve for $x$ and $y$

We write it as the system of equations


$
\left\{
\begin{equation}
\begin{aligned}

x - y =& 4
&& \text{Equation 1}
\\
x + y =& 6
&& \text{Equation 2}

\end{aligned}
\end{equation}
\right.
$


We use elimination method to solve the system


$
\left\{
\begin{equation}
\begin{aligned}

x - y =& 4
&&
\\
\\
-x - y =& -6
&& \text{Equation 2 } + (-1) \times \text{ Equation 1}
\\
\\
\end{aligned}
\end{equation}
\right.
$


$
\begin{equation}
\begin{aligned}
\hline
\\
\\
-2y =& -2
&& \text{Add}
\\
\\
y =& \frac{-2}{-2}
&& \text{Divide by } -2
\\
\\
y =& 1
&&


\end{aligned}
\end{equation}
$


We back substitute $y = 1$ into the first equation and solve for $x$.


$
\begin{equation}
\begin{aligned}

x - 1 =& 4
&& \text{Back-substitute } y = 1
\\
x =& 4 + 1
&& \text{Add } 1
\\
x =& 5
&&

\end{aligned}
\end{equation}
$


So,


$
\begin{equation}
\begin{aligned}

\left[ \begin{array}{cc}
x & y \\
-y & x
\end{array} \right]

-

\left[ \begin{array}{cc}
y & x \\
x & -y
\end{array} \right]

=&

\left[ \begin{array}{cc}
4 & -4 \\
-6 & 6
\end{array} \right]

\\
\\
\\
\\

\left[ \begin{array}{cc}
5 & 1 \\
-1 & 5
\end{array} \right]

-

\left[ \begin{array}{cc}
1 & 5 \\
5 & -1
\end{array} \right]

=&

\left[ \begin{array}{cc}
4 & -4 \\
-6 & 6
\end{array} \right]

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...