Tuesday, June 26, 2018

Single Variable Calculus, Chapter 6, 6.1, Section 6.1, Problem 18

Sketch the region enclosed by the curves $y = 8 - x^2$, $y = x^2$, $x = -3$ and $x = 3$. Then find the area of the region.


By using vertical strips
$\displaystyle A = \int^{x_2}_{x_1} \left(y_{\text{upper}} - y_{\text{lower}} \right) dx$
In order to get the values of the upper and lower limits, we equate the two functions to get its point of intersection. Thus


$
\begin{equation}
\begin{aligned}
8 - x^2 &= x^2\\
\\
2x^2 &= 8 \\
\\
x^2 &= 4
\end{aligned}
\end{equation}
$

we have, $x = 2$ and $ x = -2$
Let's divide the shaded region on three parts. Let $A_1$, $A_2$ and $A_3$ be the area of left most part, middle part and the right most part respectively. Thus,

$
\begin{equation}
\begin{aligned}
A_1 &= \int^{-2}_{-3} \left[ x^2 - \left( 8 - x^2 \right)\right] dx\\
\\
A_1 &= \int^{-2}_{-3} \left[ 2x^2 - 8 \right] dx\\
\\
A_1 &= \left[ \frac{2x^3}{3} - 8x \right]^{-2}_{-3}\\
\\
A_1 &= \frac{14}{3} \text{ square units}

\end{aligned}
\end{equation}
$

For the middle part,

$
\begin{equation}
\begin{aligned}
A_2 &= \int^{2}_{-2} \left[ x^2 - \left( 8 - x^2 \right)\right] dx\\
\\
A_2 &= \int^2_{-2} \left[ 8 - 2x^2 \right]dx \\
\\
A_2 &= \left[ 8x - \frac{2x^3}{3} \right]^2_{-2}\\
\\
A_2 &= \frac{64}{3} \text{ square units}

\end{aligned}
\end{equation}
$


For the right most part,

$
\begin{equation}
\begin{aligned}
A_3 &= \int^3_2 \left[ x^2 - \left( 8 - x^2 \right)\right] dx\\
\\
A_3 &= \int^3_2 \left[ 2x^2 - 8 \right]\\
\\
A_3 &= \left[ \frac{2x^3}{3} -8x \right]^3_2\\
\\
A_3 &= \frac{14}{3} \text{ square units}
\end{aligned}
\end{equation}
$



Therefore, the area of the entire region is $\displaystyle A_1 + A_2 + A_3 = \frac{14}{3} + \frac{64}{3} + \frac{14}{3} = \frac{92}{3}$ square units

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...