Thursday, June 21, 2018

College Algebra, Chapter 7, 7.3, Section 7.3, Problem 28

Solve the system of equations $\left\{
\begin{equation}
\begin{aligned}

-7x + 4y =& 0
\\
8x -5y =& 100

\end{aligned}
\end{equation}
\right.
$, $\displaystyle \left[ \begin{array}{cc}
\displaystyle \frac{-5}{3} & \displaystyle \frac{-4}{3} \\
\displaystyle \frac{-8}{3} & \displaystyle \frac{-7}{3}
\end{array} \right] $ by converting to a matrix equation and using the inverse of the coefficient matrix $\left[ \begin{array}{cc}
-9 & 4 \\
7 & -3
\end{array} \right]$

We write the system as a matrix equation of the form $AX = B$







Using the rule for finding the inverse of a $2 \times 2$ matrix, we get

$\displaystyle A^{-1} = \left[ \begin{array}{cc}
-7 & 4 \\
8 & -5
\end{array} \right]^{-1} = \frac{1}{-7 (-5) - 4(8)} \left[ \begin{array}{cc}
-5 & -4 \\
-8 & -7
\end{array} \right] = \frac{1}{3} \left[ \begin{array}{cc}
-5 & -4 \\
-8 & -7
\end{array} \right] $

Multiplying each side of the matrix equation by this inverse matrix, we get


$
\begin{equation}
\begin{aligned}

\left[ \begin{array}{c}
x \\
y
\end{array} \right] =&
\frac{1}{3}
\left[ \begin{array}{cc}
-5 & -4 \\
-8 & -7
\end{array} \right]

\left[ \begin{array}{c}
0 \\
100
\end{array} \right] = \left[ \begin{array}{c}
\displaystyle \frac{-5}{3} \cdot 0 + \left( \frac{-4}{3} \right) \cdot 100 \\
\displaystyle \frac{-8}{3} \cdot 0 + \left( \frac{-7}{3} \right) \cdot 100
\end{array} \right]
=
\left[ \begin{array}{c}
\displaystyle \frac{-400}{3} \\
\displaystyle \frac{-700}{3}
\end{array} \right]

X =& A^{-1} \qquad B

\end{aligned}
\end{equation}
$


So $\displaystyle x = \frac{-400}{3}$ and $\displaystyle y = \frac{-700}{3}$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...