Saturday, June 16, 2018

Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 14

Suppose that a rock is thrown upward on the planet Mars with a velocity of 10$m/s$, its height (in meters) after $t$ seconds is given
by $H = 10 t - 1.86 t ^2$
a.) Find the velocity of the rock after one second.
b.) Find the velocity of the rock when $t=a$.
c.) At what time will the rock hit the surface?
d.) At what velocity will the rock hit the surface?

a.) From the definition of instantaneous velocity,

$
\displaystyle
\nu ( a ) = \lim\limits_{h \to 0} \frac{f(a+h)-f(a)}{h}\\
$



$
\begin{equation}
\begin{aligned}
\qquad
f(t)
& = 10t-1.86t^2\\
\nu(a)
& = \lim \limits_{h \to 0} \frac{10(a+h) - 1.86(a+h)^2 - [10(a) - 1.86(a)^2]}{h}\\
\nu(a)
& = \lim \limits_{h \to 0} \frac{\cancel{10a} + 10h - \cancel{1.86a^2} - 3.72ah - 1.86h^2 - \cancel{10a} + \cancel{1.86a^2}}{h}\\
\nu(a)
& = \lim \limits_{h \to 0} \frac{\cancel{h}(10-3.72a-1.86h)}{\cancel{h}}\\
\nu(a)
& = \lim \limits_{h \to 0} (10 - 3.72a - 1.86h)\\
\nu(a)
& = 10 - 3.72a - 1.86(0)\\
\nu(a)
& = 10-3.72a
\end{aligned}
\end{equation}
$


$
\begin{equation}
\begin{aligned}
\text{The velocity after } 1s \text{ is } v(1) & = 10 - 3.72(1) = 6.28 m/s\\
\end{aligned}
\end{equation}
$


b.) The velocity of the rock when $t=a$ is $\nu(a) = 10 - 3.72a$
c.) The rock will hit the surface at $H(t) = 0$ so,

$
\begin{equation}
\begin{aligned}
0 = & 10 t - 1.86t^2\\
\frac{1.86 \cancel{t^2}}{\cancel{t}} = & \frac{10 \cancel{t}}{\cancel{t}}\\
t = & \frac{10}{1.86} s
\end{aligned}
\end{equation}
$


d.) The velocity when the rock hits the surface...

$
\begin{equation}
\begin{aligned}
\nu (t) & = 10 - 3.72t && ;\text{ where } t = \frac{10}{1.86}\\
\nu & = 10 - 3.72 \left( \frac{10}{1.86} \right)\\
\nu & = -10 \frac{m}{s} &&; \text{ velocity is negative since the rock is falling.}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...