Sunday, June 24, 2018

f(x)=lnx, n=4,c=2 Find the n'th Taylor Polynomial centered at c

Taylor series is an example of infinite series derived from the expansion of f(x) about a single point. It is represented by infinite sum of f^n(x) centered at x=c . The general formula for Taylor series is:
f(x) = sum_(n=0)^oo (f^n(c))/(n!) (x-c)^n
or
f(x) =f(c)+f'(c)(x-c) +(f^2(c))/(2!)(x-c)^2 +(f^3(c))/(3!)(x-c)^3 +(f^4(c))/(4!)(x-c)^4 +...
To determine the Taylor polynomial of degree n=4 from the given function f(x)=ln(x) centered at x=2 , we may apply the definition of Taylor series.
We list f^n(x) up to n=4  as:
f(x) = ln(x)
f'(x) = d/(dx)ln(x) =1/x
Apply Power rule for derivative: d/(dx) x^n= n *x^(n-1) .
f^2(x) = d/(dx) 1/x
           = d/(dx) x^(-1)
           =-1 *x^(-1-1)
           =-x^(-2) or -1/x^2
f^3(x)= d/(dx) -x^(-2)
           =-1 *d/(dx) x^(-2)
           =-1 *(-2x^(-2-1))
          =2x^(-3) or 2/x^3
f^4(x)= d/(dx) 2x^(-3)
            =2 *d/(dx) x^(-3)
           =2 *(-3x^(-3-1))
            =-6x^(-4) or -6/x^4
Plug-in x=2 , we get:
f(2) =ln(2)
f'(2)=1/2
f^2(2)=-1/2^2 = -1/4
f^3(2)=2/2^3 =1/4
f^4(2)=-6/2^4 = -3/8
Applying the formula for Taylor series, we get:
sum_(n=0)^4 (f^n(2))/(n!) (x-2)^n
=f(2)+f'(2)(x-2) +(f^2(2))/(2!)(x-2)^2 +(f^3(2))/(3!)(x-2)^3 +(f^4(2))/(4!)(x-2)^4
=ln(2)+1/2(x-2) +(-1/4)/(2!)(x-2)^2 +(1/4)/(3!)(x-2)^3 +(-3/8)/(4!)(x-2)^4
=ln(2)+1/2(x-2) -(1/4)/2(x-2)^2 +(1/4)/6(x-2)^3 -(3/8)/24(x-2)^4
=ln(2)+1/2(x-2) -1/8(x-2)^2 + 1/24(x-2)^3 -1/64(x-2)^4
The Taylor polynomial of degree n=4  for the given function f(x)=ln(x) centered at x=2 will be:
P_4(x)=ln(2)+1/2(x-2) -1/8(x-2)^2 + 1/24(x-2)^3 -1/64(x-2)^4

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...