Saturday, July 14, 2018

Calculus of a Single Variable, Chapter 9, 9.10, Section 9.10, Problem 65

From the Power Series table for trigonometric function, we have:
sin(x) =sum_(n=0)^oo (-1)^n x^(2n+1)/((2n+1)!)
= x -x^3/(3!) +x^5/(5!) - x^7/(7!) +...
Applying it on the integral int_0^1 sin(x)/x dx where the integrand is f(x)=sin(x)/x, we get:
int_0^1 sin(x)/x dx = int_0^1 sin(x)*1/x dx
=int_0^1 sum_(n=0)^oo (-1)^n x^(2n+1)/((2n+1)!) *1/xdx
=int_0^1sum_(n=0)^oo (-1)^n x^(2n+1)/((2n+1)!) *x^(-1)dx
=int_0^1sum_(n=0)^oo (-1)^n x^(2n+1-1)/((2n+1)!) dx
=int_0^1sum_(n=0)^oo (-1)^n x^(2n)/((2n+1)!) dx
=int_0^1 [1 -x^2/(3!) +x^4/(5!) - x^6/(7!) +...] dx
Or
int_0^1 sin(x)/x dx =int_0^1 sin(x)/x dx
=int_0^1 1/x* [x -x^3/(3!) +x^5/(5!) - x^7/(7!) +...] dx
= int_0^1 [x/x -x^3/(3!x) +x^5/(5!x) - x^7/(7!x) +...] dx
=int_0^1 [1 -x^2/(3!) +x^4/(5!) - x^6/(7!) +...] dx
To determine the indefinite integral, we integrate each term using Power rule for integration: int x^n dx = x^(n+1)/(n+1) .
int_0^1 [1 -x^2/3! +x^4/5! - x^6/7! +...] dx= [x -x^3/(3!*3) +x^5/(5!*5) - x^7/(7!*7) +...]_0^1
= [x -x^3/(1*2*3*3) +x^5/(1*2*3*4*5*5) - x^7/(1*2*3*4*5*6*7*7) +...]_0^1
= [x -x^3/(6*3) +x^5/(120*5) - x^7/(5040*7) +...]_0^1
= [x -x^3/18 +x^5/600- x^7/35280+...]_0^1
Apply definite integral formula: F(x)|a^b =F(b)-F(a) .
F(1)= 1-1^3/18 +1^5/600- 1^7/35280+...
=1-1/18 +1/600- 1/35280+...
F(0)= 0-0^3/18 +0^5/600- 0^7/35280+...
=0-0+0-0+...
All the terms are 0 then F(0)=0 .
We can stop on the 4th term (1/35280 ~~2.8345x10^(-5)) since we only need an error less than 0.0001.
F(1)-F(0)= [1-1/18 +1/600- 1/35280]- [0]
=1-1/18 +1/600- 1/35280
= 0.9460827664
Then, the approximated integral value will be:
int_0^1 sin(x)/x dx~~0.9461

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...