Friday, July 20, 2018

Single Variable Calculus, Chapter 7, Review Exercises, Section Review Exercises, Problem 58

Determine the equation of the tangent line to the curve $y = x \ln x$ at point $(e, e)$

Solving for the slope


$
\begin{equation}
\begin{aligned}

y' =& \frac{d}{dx} (x \ln x)
\\
\\
y' =& x \frac{d}{dx} (\ln x) + \ln x \frac{d}{dx} (x)
\\
\\
y' =& \cancel{x} \cdot \frac{1}{\cancel{x}} + \ln x
\\
\\
y' =& 1 + \ln x

\end{aligned}
\end{equation}
$


We know that $y' = m( \text{slope})$, so


$
\begin{equation}
\begin{aligned}

m =& 1 + \ln x
\\
\\
m =& 1 + \ln e
\\
\\
m =& 1 + 1
\\
\\
m =& 2

\end{aligned}
\end{equation}
$


Using Point Slope Form


$
\begin{equation}
\begin{aligned}

y - y_1 =& m (x - x_1)
\\
\\
y - e =& 2 (x - e)
\\
\\
y - e =& 2x - 2e
\\
\\
y =& 2x - 2e + e
\\
\\
y =& 2x - e \qquad \text{ Equation of the tangent line at } (e, e)

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...