Monday, July 30, 2018

College Algebra, Exercise P, Exercise P.4, Section Exercise P.4, Problem 54

Simplify the expression $\displaystyle \left(2u^2 v^3 \right)^3 \left( 3u^{-3}v \right)^2$ and eliminate any negative exponents.

$
\begin{equation}
\begin{aligned}
\left(2u^2 v^3 \right)^3 \left( 3u^{-3}v \right)^2 &= \left[ 2^3(u^2)^3(v^3)^3 \right] \left[ 3^2(u^{-3})^2 v^2 \right] && \text{Law: } (ab)^n = a^n b^n\\
\\
&= \left( 8u^6 v^9 \right) \left( 9u^{-6} v^2 \right) && \text{Law: } (a^m)^n = a^{mn}\\
\\
&= (8) (9) u^6 u^{-6} v^9 v^2 && \text{Group factors with same base}\\
\\
&= 72 u^{6+(-6)} v^{9+2} && \text{Law: } a^m a^n = a^{m+n}\\
\\
&= 72u^0 v^{11} && \text{Simplify}\\
\\
&= 73v^{11}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...