Tuesday, July 17, 2018

Intermediate Algebra, Chapter 4, 4.2, Section 4.2, Problem 16

Solve the system of equations $
\begin{equation}
\begin{aligned}

\frac{2}{3}x - \frac{1}{4}y + \frac{5}{8}z =& 0 \\
\\
\frac{1}{5}x + \frac{2}{3}y - \frac{1}{4}z =& -7 \\
\\
- \frac{3}{5}x + \frac{4}{3}y - \frac{7}{8}z =& -5

\end{aligned}
\end{equation}
$.


$
\begin{equation}
\begin{aligned}

\frac{14}{3}x - \frac{7}{4}y + \frac{35}{8}z =& 0
&& 7 \times \text{ Equation 1}
\\
\\
- \frac{15}{5}x + \frac{20}{3}y - \frac{35}{8}z =& -25
&& 5 \times \text{ Equation 3}
\\
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

\frac{5}{3}x + \frac{59}{12}y \phantom{- \frac{35}{8}} =& -25
&& \text{Add}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

\frac{2}{3}x - \frac{1}{4}y + \frac{5}{8}z =& 0
&&
\\
\\
\frac{1}{2}x + \frac{5}{3}y - \frac{5}{8}z =& - \frac{35}{2}
&& \frac{5}{2} \times \text{ Equation 2}
\\
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

\frac{7}{6}x + \frac{17}{12}y \phantom{ - \frac{5}{8}z} =& - \frac{35}{2}
&& \text{Add}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

\frac{5}{3}x + \frac{59}{12}y =& -25
&& \text{Equation 4}
\\
\\
\frac{7}{6}x + \frac{17}{12}y =& - \frac{35}{2}
&& \text{Equation 5}

\end{aligned}
\end{equation}
$


We write the equations in two variables as a system


$
\begin{equation}
\begin{aligned}

- \frac{85}{3} x - \frac{1003}{12} y =& 425
&& -17 \times \text{ Equation 4}
\\
\\
\frac{413}{6} x + \frac{1003}{12} y =& - \frac{2065}{2}
&& 59 \times \text{ Equation 5}
\\
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

\frac{81}{2}x \phantom{\frac{1003}{12}y} =& - \frac{1215}{2}
&& \text{Add}
\\
\\
x =& -15
&& \text{Multiply each side by } \frac{2}{81}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

\frac{5}{3} (-15) + \frac{59}{12}y =& -25
&& \text{Substitute } x = -15 \text{ in Equation 4}
\\
\\
-25 + \frac{59}{12}y =& -25
&& \text{Multiply}
\\
\\
\frac{59}{12}y =& 0
&& \text{Add each side by $25$}
\\
\\
y =& 0
&& \text{Multiply each side by } \frac{12}{59}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

\frac{2}{3} (-15) - \frac{1}{4} (0) + \frac{5}{8}z =& 0
&& \text{Substitute } x = -15 \text{ and } y = 0 \text{ in Equation 1}
\\
\\
-10 - 0 + \frac{5}{8}z =& 0
&& \text{Multiply}
\\
\\
\frac{5}{8}z =& 10
&& \text{Add each side by $10$}
\\
\\
z =& 16
&& \text{Multiply each side by } \frac{8}{5}

\end{aligned}
\end{equation}
$



The ordered triple is $\displaystyle \left( -15,0,16 \right)$.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...