Friday, March 8, 2019

Beginning Algebra With Applications, Chapter 3, 3.2, Section 3.2, Problem 202

Solve $\displaystyle \frac{1}{5} (25-10 b) + 4 = \frac{1}{3} (9b-15)-6$. If the equation has no solution, write "No solution."



$
\begin{equation}
\begin{aligned}

\frac{1}{5} (25-10b) + 4 =& \frac{1}{3} (9b-15)-6
&& \text{Given equation}
\\
\\
\frac{25}{5}- \frac{10b}{5}+ 4 =& \frac{9b}{3} - \frac{15}{3} - 6
&& \text{Apply Distributive Property}
\\
\\
5-2b + 4 =& 3b-5-6
&& \text{Simplify}
\\
\\
-2b-3b =& -5-5-6-4
&& \text{Combine like terms}
\\
\\
-5b =& -20
&& \text{Simplify}
\\
\\
\frac{\cancel{-5}b}{\cancel{-5}} =& \frac{-20}{-5}
&& \text{Divide by } -5
\\
\\
b =& 4
&&

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...