Friday, March 1, 2019

Calculus and Its Applications, Chapter 1, 1.7, Section 1.7, Problem 62

Consider

$\displaystyle g(x) = \left( \frac{6x + 1}{2x - 5} \right)^2$

a. Determine $g'(x)$ using the Extended Power Rule.


$
\begin{equation}
\begin{aligned}

g'(x) =& 2 \left( \frac{6x + 1}{2x - 5} \right) \cdot \frac{d}{dx} \left( \frac{6x + 1}{2x - 5} \right)
\\
\\
=& 2 \left( \frac{6x + 1}{2x - 5} \right) \left[ \frac{\displaystyle (2x - 5) \cdot \frac{d}{dx} (6x + 1) - (6x + 1) \cdot \frac{d}{dx} (2x-5) }{(2x - 5)^2} \right]
\\
\\
=& 2 \left( \frac{6x + 1}{2x - 5} \right) \left[ \frac{(2x-5)(6) - (6x + 1)(2) }{(2x - 5)^2} \right]
\\
\\
=& 2 \left( \frac{6x + 1}{2x - 5} \right) \left[ \frac{12x - 30 - 12x - 2}{(2x-5)^2} \right]
\\
\\
=& 2 \left( \frac{6x + 1}{2x - 5} \right) \left[ \frac{-32}{(2x-5)^2} \right]
\\
\\
=& \frac{-64 (6x + 1)}{(2x - 5)^3}


\end{aligned}
\end{equation}
$


b. Note that

$\displaystyle g(x) = \frac{36x^2 + 12x + 1}{4x^2 - 20x + 25}$

Determine $g'(x)$ using the Quotient Rule.


$
\begin{equation}
\begin{aligned}

g'(x) =& \frac{\displaystyle (4x^2 - 20x + 25) \cdot \frac{d}{dx} (36x^2 + 12x + 1) - (36x^2 + 12x + 1) \cdot \frac{d}{dx} (4x^2 - 20x + 25) }{(4x^2 - 20x + 25)^2}
\\
\\
=& \frac{(4x^2 - 20x + 25) (72x + 12) - (36x^2 + 12x + 1) (8x - 20)}{(4x^2 - 20x + 25)^2}
\\
\\
=& \frac{12 (2x - 5)^2 (6x + 1) - 4(6x + 1)^2 (2x - 5)}{(4x^2 - 20x + 25)^2}
\\
\\
=& \frac{4 (6x + 1) (2x - 5) [3 (2x - 5) - (6x + 1)] }{[(2x - 5)^2]^2}
\\
\\
=& \frac{4 (6x + 1) (6x - 15 - 6x - 1) }{(2x - 5)^3}
\\
\\
=& \frac{4(6x + 1) (-16)}{(2x - 5)^3}
\\
\\
=& \frac{-64 (6x + 1)}{(2x - 5)^3}

\end{aligned}
\end{equation}
$


c. Compare your answers to parts (a) and (b). Which approach was easier, and why?

The extended power rule is easier to use because it has shorter solution.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...