Sunday, March 10, 2019

College Algebra, Chapter 5, Review Exercise, Section Review Exercise, Problem 50

Expand the Logarithmic Expression $\displaystyle \ln \left( \frac{3\sqrt{x^4 + 12}}{(x + 16) \sqrt{x-3}} \right)$

$
\begin{equation}
\begin{aligned}
\ln \left( \frac{3\sqrt{x^4 + 12}}{(x + 16) \sqrt{x-3}} \right) &= \ln \sqrt[3]{x^4 + 12} - \ln (x + 16) \sqrt{x-3} && \text{Laws of Logarithm } \log_a \frac{A}{B} = \log_a A - \log_a B\\
\\
\ln \left( \frac{3\sqrt{x^4 + 12}}{(x + 16) \sqrt{x-3}} \right) &= \ln \sqrt[3]{x^4 + 12} - [\ln (x + 16) + \ln \sqrt{x-3}]&& \text{Laws of Logarithm } \log_a AB = \log_a A + \log_a B\\
\\
\ln \left( \frac{3\sqrt{x^4 + 12}}{(x + 16) \sqrt{x-3}} \right) &= \frac{1}{3}\ln (x^4 + 12) - \left[ \ln (x + 16) + \frac{1}{2} \ln (x - 3) \right] && \text{Laws of Logarithm } \log_a A^c = C\log_a A\\
\\
\ln \left( \frac{3\sqrt{x^4 + 12}}{(x + 16) \sqrt{x-3}} \right) &= \frac{1}{3}\ln (x^4 + 12) - \ln (x + 16) - \frac{1}{2} \ln (x - 3) && \text{Distributive Property}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...