Saturday, March 2, 2019

Single Variable Calculus, Chapter 5, 5.2, Section 5.2, Problem 30

Find an expression of $\displaystyle \int^{2 \pi}_0 x^2 \sin x dx$ as a limit of Riemann Sums. Do not evaluate the limit


$
\begin{equation}
\begin{aligned}

\Delta x =& \frac{b - a}{n}
\\
\\
\Delta x =& \frac{2 \pi - 0}{n}
\\
\\
\Delta x =& \frac{2 \pi}{n}
\\
\\
xi =& a + i \Delta x
\\
\\
xi =& 0 + \frac{2 \pi i}{n}
\\
\\
xi =& \frac{2 \pi i}{n}


\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

\int^{2 \pi}_0 f(x) dx =& \int^{2 \pi}_0 x^2 \sin x dx
\\
\\
\int^{2 \pi}_0 f(x) dx =& \lim_{n \to \infty} \sum \limits_{i = 1}^n f(xi) \Delta x
\\
\\
\int^{2 \pi}_0 x^2 \sin x dx =& \lim_{n \to \infty} \sum \limits_{i = 1}^n f \left( \frac{2 \pi i}{n } \right) \left( \frac{2 \pi}{n} \right)
\\
\\
\int^{2 \pi}_0 x^2 \sin x dx =& \lim_{n \to \infty} \sum \limits_{i = 1}^n \left( \frac{2 \pi i}{n} \right)^2 \sin \left(\frac{2 \pi i}{n} \right) \left(\frac{2 \pi}{n} \right)
\\
\\
\int^{2 \pi}_0 x^2 \sin x dx =& \lim_{n \to \infty} \sum \limits_{i = 1}^n \left( \frac{4 \pi^2 i^2}{n^2} \right) \left( \frac{2 \pi}{n} \right) \sin \left( \frac{2 \pi i}{n} \right)
\\
\\
\int^{2 \pi}_0 x^2 \sin x dx =& \lim_{n \to \infty} \sum \limits_{i = 1}^n \frac{8 \pi 3 i^2}{n^3} \sin \left( \frac{2 \pi i}{n} \right)

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...