Thursday, May 9, 2019

Calculus and Its Applications, Chapter 1, 1.7, Section 1.7, Problem 68

Determine the answer by using Chain Rule and check your answer by finding $f(g(x))$, taking the derivative and substituting.

$\displaystyle f(u) = \frac{u + 1}{u - 1}, g(x) = u = \sqrt{x}$

Find $(f \circ g)'(4)$.


First, we find


$
\begin{equation}
\begin{aligned}

f'(u) = \frac{dy}{du} =& \frac{\displaystyle (u-1) \cdot \frac{d}{du} (u + 1) - (u + 1) \cdot \frac{d}{du} (u-1) }{(u-1)^2}
\qquad \text{ and } &&& g'(x) = \frac{du}{dx} =& \frac{d}{dx} (x)^{\frac{1}{2}}
\\
\\
=& \frac{(u-1)(1) - (u+1)(1)}{(u-1)^2}
&&& =& \frac{1}{2} x^{\frac{-1}{2}}
\\
\\
=& \frac{u - 1 - u - 1}{(u-1)^2}
&&& =& \frac{1}{2 \sqrt{x}}
\\
\\
=& \frac{-2}{(u-1)^2}

\end{aligned}
\end{equation}
$


then,


$
\begin{equation}
\begin{aligned}

\frac{dy}{dx} =& \frac{-2}{(u-1)^2} \cdot \frac{1}{2 \sqrt{x}}
\\
\\
=& \frac{-1}{(u-1)^2 \sqrt{x}}
\\
\\
=& \frac{-1}{(\sqrt{x} - 1)^2 \sqrt{x}}
\\
\\
(f \circ g)'(4) =& \frac{-1}{(\sqrt{4} - 1)^2 \sqrt{4}}
\\
\\
=& \frac{-1}{(2-1)^2 (2)}
\\
\\
=& \frac{-1}{2}


\end{aligned}
\end{equation}
$



To check, we find first $f(g(x))$ and take the derivative.


$
\begin{equation}
\begin{aligned}

f(g(x)) = f( \sqrt{x}) =& \frac{u+1}{u-1}
\\
\\
=& \frac{\sqrt{x} + 1}{\sqrt{x} - 1}
\\
\\
f'(g(x)) =& \frac{\displaystyle (\sqrt{x} - 1) \cdot \frac{d}{dx} (\sqrt{x} + 1) - (\sqrt{x} + 1) \cdot \frac{d}{dx} (\sqrt{x} - 1) }{(\sqrt{x} - 1)^2}
\\
\\
=& \frac{\displaystyle (\sqrt{x} - 1) \left( \frac{1}{2 \sqrt{x}} \right) - (\sqrt{x} + 1) \left( \frac{1}{2 \sqrt{x}} \right) }{(\sqrt{x} - 1)^2}
\\
\\
=& \frac{\sqrt{x} - 1 - \sqrt{x} - 1}{2 \sqrt{x} (\sqrt{x} - 1)^2}
\\
\\
=& \frac{-2}{2 \sqrt{x} (\sqrt{x} - 1)^2}
\\
\\
=& \frac{-1}{\sqrt{x} (\sqrt{x} - 1)^2}
\\
\\
(f \circ g)'(4) =& \frac{-1}{\sqrt{4} (\sqrt{4} - 1)^2}
\\
\\
=& \frac{-1}{2 (2-1)^2}
\\
\\
=& \frac{-1}{2}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...