Friday, May 17, 2019

College Algebra, Chapter 7, 7.3, Section 7.3, Problem 26

Solve the system of equations $\left\{
\begin{equation}
\begin{aligned}

3x + 4y =& 10
\\
7x + 9y =& 20

\end{aligned}
\end{equation}
\right.
$ by converting to a matrix equation and using the inverse of the coefficient matrix $\left[ \begin{array}{cc}
-9 & 4 \\
7 & -3
\end{array} \right]$

We write the system as a matrix equation of the form $AX = B$







Using the rule for finding the inverse of a $2 \times 2$ matrix, we get

$\displaystyle A^{-1} = \left[ \begin{array}{cc}
3 & 4 \\
7 & 9
\end{array} \right]^{-1} = \frac{1}{3(9) - 4(7)} \left[ \begin{array}{cc}
9 & -4 \\
-7 & 3
\end{array} \right] = -1 \left[ \begin{array}{cc}
9 & -4 \\
-7 & 3
\end{array} \right] $

Multiplying each side of the matrix equation by this inverse matrix, we get


$
\begin{equation}
\begin{aligned}

\left[ \begin{array}{c}
x \\
y
\end{array} \right] =&

\left[ \begin{array}{cc}
-9 & 4 \\
7 & -3
\end{array} \right]

\left[ \begin{array}{c}
10 \\
20
\end{array} \right] = \left[ \begin{array}{c}
9 \cdot 10 + (-4 \cdot 20) \\
-7 \cdot 10 + 3 \cdot 20
\end{array} \right]
=
\left[ \begin{array}{c}
10 \\
-10
\end{array} \right]

X =& A^{-1} \qquad B

\end{aligned}
\end{equation}
$


So $x = 10$ and $y = -10$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...