Tuesday, May 21, 2019

Calculus and Its Applications, Chapter 1, 1.7, Section 1.7, Problem 94

Illustrate the $f$ and $f'$ of the function $f(x) = 1.68x \sqrt{9.2 - x^2}$ over the
given interval $[-3,3]$. Then estimate points at which the tangent line is horizontal.

If $f(x) = 1.68x(9.2 - x^2)^{\frac{1}{2}}$, then by using Chain Rule and Product Rule


$
\begin{equation}
\begin{aligned}
f'(x) &= 1.68x \cdot \frac{d}{dx} \left[(9.2 - x^2)^{\frac{1}{2}} \right] + (9.2 - x^2)^{\frac{1}{2}} \cdot \frac{d}{dx} (1.68x)\\
\\
f'(x) &= 1.68x \cdot \frac{1}{2} (9.2 - x^2)^{\frac{1}{2} - 1} \cdot \frac{d}{dx} (9.2 - x^2) + (9.2 - x^2)^{\frac{1}{2}} (1.68)\\
\\
f'(x) &= \frac{1.68x}{2} (9.2 - x^2)^{-\frac{1}{2}} ( -2x) + (9.2 - x^2)^{\frac{1}{2}} ( 1 .68)\\
\\
f'(x) &= \frac{-1.68 x^2}{(9.2 - x^2)^{\frac{1}{2}}} + 1.68 (9.2 - x^2)^{\frac{1}{2}}\\
\\
f'(x) &= 1.68 \left[ \frac{-x^2 + 9.2 - x^2}{(9.2 - x^2)^{\frac{1}{2}}} \right]\\
\\
f'(x) &= \frac{15.456 - 3.36x^2}{(9.2- x^2)^{\frac{1}{2}}}
\end{aligned}
\end{equation}
$


Thus, the graph of $f$ and its derivative is



Based from the graph, the points at which the tangent line is horizontal (slope = 0) are
$x \approx -2.15$ and $x \approx 2.15$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...