Thursday, May 30, 2019

Calculus: Early Transcendentals, Chapter 4, 4.4, Section 4.4, Problem 64

You need to evaluate the limit, hence, you need to replace 1 for x:
lim_(x->1) (2 - x)^(tan((pi*x)/2)) = (2-1)^oo = 1^oo
You need to use the logarithm special technique but first you need to define the followings:
f(x) = (2 - x)^(tan((pi*x)/2))
Taking logarithms both sides yields:
ln f(x) = ln (2 - x)^(tan((pi*x)/2))
ln f(x) = ((tan((pi*x)/2))) * ln (2 - x)
Taking the limit:
lim_(x->1) ln f(x) = lim_(x->1)((tan((pi*x)/2))) * ln (2 - x) = oo*0
lim_(x->1)((tan((pi*x)/2))) * ln (2 - x) = lim_(x->1) (ln (2 - x))/(1/((tan((pi*x)/2))) = 0/0
You may use that 1/((tan((pi*x)/2))) = cot((pi*x)/2)
lim_(x->1) (ln (2 - x))/(cot ((pi*x)/2))
You may use l'Hospital's rule:
lim_(x->1) (ln (2 - x))/(cot ((pi*x)/2)) = lim_(x->1) ((ln (2 - x))')/((cot ((pi*x)/2))')
lim_(x->1) ((ln (2 - x))')/((cot ((pi*x)/2))') = lim_(x->1) (-1/(2-x))/(-(pi/2)csc^2((pi*x)/2)) = (-1/1)/(-pi/2) = 2/pi
Hence, evaluating the limit, yields lim_(x->1) (2 - x)^(tan((pi*x)/2)) = e^(2/pi).

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...