Monday, July 29, 2019

Calculus: Early Transcendentals, Chapter 4, 4.4, Section 4.4, Problem 51

lim_(x->0^+) (1/x-1/(e^x-1))
Plug-in x=0 to the function.
lim_(x->0^+) (1/x-1/(e^x-1)) = 1/0-1/(e^0-1)=oo - oo
Since the result is indeterminate, to take its limit apply L'Hospital's Rule. To do so, expression the function as one fraction.
lim_(x->0^+) (1/x-1/(e^x-1)) = lim_(x->0^+) ((e^x-1)/(x(e^x-1)) - x/(x(e^x-1)))=lim_(x->0^+) (e^x-x-1)/(x(e^x-1))
Then, take the derivative of the numerator and denominator.
lim_(x->0^+) ((e^x-x-1)')/((x(e^x-1))')=lim_(x->0^+) (e^x-1-0)/(x*e^x + 1*(e^x-1)) = lim_(x->0^+) (e^x-1)/(xe^x + e^x-1)
And, plug-in x=0.
lim_(x->0^+)(e^x-1)/(xe^x+e^x-1)= (e^0-1)/(0*e^0+e^0-1) = 0/0
Since the result it still indeterminate, apply L'Hospitals Rule again. Take the derivative of the numerator and denominator.
lim_(x->0^+) ((e^x-1)')/((xe^x+e^x-1)') = lim_(x->0^+) (e^x-0)/(x*e^x+1*e^x+e^x-0) = lim_(x->0^+) e^x/(xe^x + 2e^x) = lim_(x->0^+)1/(x+2)
And, plug-in x=0.
lim_(x->0^+)(1/x+2)=1/(0+2)=1/2

Therefore, lim_(x->0^+) (1/x -1/(e^x-1)) = 1/2 .

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...