Thursday, July 18, 2019

Single Variable Calculus, Chapter 3, 3.9, Section 3.9, Problem 14

a.) Determine the differential of $\displaystyle y = (t + \tan t)^5$

Using Differential Approximation

$dy = f'(t) dt$


$
\begin{equation}
\begin{aligned}

\frac{dy}{dt} =& \frac{d}{dt} (t + \tan t)^5
\\
\\
dy =& \left[ 5 (t + \tan t)^4 \frac{d}{dt} (t + \tan t) \right] dt
\\
\\
dy =& 5(t + \tan t)^4 (1 + \sec^2 t) dt


\end{aligned}
\end{equation}
$


b.) Determine the differential of $\displaystyle y = \sqrt{z + \frac{1}{2}}$

Using Differential Approximation

$dy = f'(z) dz$


$
\begin{equation}
\begin{aligned}

\frac{dy}{dz} =& \left(z + \frac{1}{2}\right)^{\frac{1}{2}}
\\
\\
dy =& \left[ \frac{1}{2} + \left( z + \frac{1}{z} \right) ^{\frac{-1}{2}} \frac{d}{dz} \left( z + \frac{1}{z} \right) \right] dz
\\
\\
dy =& \left[ \frac{1}{2} \left( z + \frac{1}{z} \right) ^{\frac{-1}{2}} \left( 1 + \left( \frac{-1}{z^2}\right) \right) \right] dz
\\
\\
dy =& \left[ \left( \frac{1}{\displaystyle 2 (z + \frac{1}{z})^{\frac{1}{2}}} \right) \left( 1 - \frac{1}{z^2} \right) \right] dz
\\
\\
dy =& \left[ \left( \frac{1}{\displaystyle 2 \left( \frac{z^2 + 1}{z} \right)^{\frac{1}{2}}} \right) \left( \frac{z^2 - 1}{z^2} \right) \right] dz
\\
\\
dy =& \left[ \frac{z^2 - 1}{2z^2 \displaystyle \frac{(z^2 + 1)^{\frac{1}{2}}}{(z)^{\frac{1}{2}}}} \right] dz
\\
\\
dy =& \left[ \frac{z^2 - 1}{2 (z)^{\frac{3}{2}} (z^2 + 1)^{\frac{1}{2}}} \right] dz
\\
\\
dy =& \left[ \frac{z^2 - 1}{2(z)(z)^{\frac{1}{2}} (z^2 + 1)^{\frac{1}{2}}} \right] dz
\\
\\
dy =& \frac{z^2 - 1}{2z [z (z^2 + 1)^{\frac{1}{2}}]^{\frac{1}{2}}} dz
\\
\\
dy =& \frac{z^2 - 1}{2z (z^3 + z)^{\frac{1}{2}}} dz
\\
\\
& \text{ or }
\\
\\
dy =& \frac{z^2 - 1}{2z \sqrt{z^3 + z}} dz

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...