Wednesday, July 24, 2019

Single Variable Calculus, Chapter 3, 3.9, Section 3.9, Problem 6

Determine the Linear Approximation of the function $g(x) = \sqrt{1 + x}$ at $a = 0$ and use it to approximate the numbers $\sqrt[3]{0.95}$ and $\sqrt[3]{1.1}$. Illustrate by graphing $g$ and the tangent line.

Using the Linear Approximation/Tangent Line Approximation

$L(x) = f(a) + f'(a)(x - a)$


$
\begin{equation}
\begin{aligned}

f(a) = f(0) =& \sqrt[3]{1 + 0}
\\
\\
f(0) =& \sqrt[3]{1}
\\
\\
f(0) =& 1
\\
\\
f'(a) = f'(0) =& \frac{d}{dx} (\sqrt[3]{\sqrt{1 + x}})
\\
\\
f'(0) =& \frac{d}{dx} (1 + x)^{\frac{1}{3}}
\\
\\
f'(0) =& \frac{1}{3} (1 + x)^{\frac{-2}{3}}
\\
\\
f'(0) =& \frac{1}{3 (1 + x)^{\frac{2}{3}}}
\\
\\
f'(0) =& \frac{1}{3 (1 + 0)^{\frac{2}{3}}}
\\
\\
f'(0) =& \frac{1}{3(1)^{\frac{2}{3}}}
\\
\\
f'(0) =& \frac{1}{3}
\\
\\
L(x) =& 1 + \frac{1}{3} (x - 0)
\\
\\
L(x) =& 1 + \frac{1}{3} x

\end{aligned}
\end{equation}
$


For $\sqrt[3]{0.95}$


$
\begin{equation}
\begin{aligned}

\sqrt[3]{0.95} =& \sqrt[3]{1 + x}
\\
\\
0.95 =& 1 + x
\\
\\
x =& 0.95 - 1
\\
\\
x =& -0.05

\end{aligned}
\end{equation}
$


For $\sqrt{\sqrt[3]{1.1}}$


$
\begin{equation}
\begin{aligned}

\sqrt[3]{1.1} = \sqrt[3]{1 + x}
\\
\\
1.1 =& 1 + x
\\
\\
x =& 1.1 - 1
\\
\\
x =& 0.1

\end{aligned}
\end{equation}
$


Linear Approximation gives


$
\begin{equation}
\begin{aligned}

L(-0.05) =& 1 + \frac{1}{3} (-0.05)
\\
\\
L(-0.05) =& \frac{3 + (-0.05)}{3}
\\
\\
L(-0.05) =& \frac{3 - 0.05}{3}
\\
\\
L(-0.05) =& \frac{2.95}{3}
\\
\\
L(-0.05) =& 0.983

\end{aligned}
\end{equation}
$


and


$
\begin{equation}
\begin{aligned}

L(0.1) =& 1 + \frac{1}{3} (0.1)
\\
\\
L(0.1) =& \frac{3 + 0.1}{3}
\\
\\
L(0.1) =& \frac{3.1}{3}
\\
\\
L(0.1) =& 1.033

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...