Thursday, July 25, 2019

Calculus of a Single Variable, Chapter 8, 8.1, Section 8.1, Problem 34

To evaluate the given integral problem: int 2/(7e^x+4)dx , we may apply u-substitution using: u= e^x then du = e^x dx .
Plug-in u = e^x on du= e^x dx , we get: du = u dx or (du)/u =dx
The integral becomes:
int 2/(7e^x+4)dx =int 2/(7u+4)* (du)/u
=int 2/(7u^2+4u)du
Apply the basic properties of integration: int c*f(x) dx= c int f(x) dx .
int 2/(7u^2+4u)du =2int 1/(7u^2+4u)du
Apply completing the square: 7u^2+4u =(sqrt(7)u+2/sqrt(7))^2 -4/7
2int 1/(7u^2+4u)du =2int 1/((sqrt(7)u+2/sqrt(7))^2 -4/7)du


Let v =sqrt(7)u+2/sqrt(7) then dv = sqrt(7) du or (dv)/sqrt(7) = du .
The integral becomes:
2int 1/(7u^2+4u)du =2 int 1/(v^2 -4/7) *(dv)/sqrt(7)
Rationalize the denominator:
2 int 1/(v^2 -4/7) *(dv)/sqrt(7) *sqrt(7)/sqrt(7)
= 2 int (sqrt(7)dv)/ ( 7*(v^2 -4/7))
=2 int (sqrt(7)dv)/ ( 7v^2 -4)

From the table of integrals, we may apply int dx/(x^2-a^2) = 1/(2a)ln[(u-a)/(u+a)]+C
Let: w = sqrt(7)v then dw = sqrt(7) dv
2int (sqrt(7) dv)/ ( 7v^2 -4) =2int (sqrt(7) dv)/ (( sqrt(7)v)^2 -2^2)
= 2 int (dw)/ (w^2-2^2)
= 2 *1/(2*2)ln[(w-2)/(w+2)]+C
=1/2ln[(w-2)/(w+2)]+C
Recall we let: w =sqrt(7)v and v =sqrt(7)u+2/sqrt(7) .
Then, w=sqrt(7)*[sqrt(7)u+2/sqrt(7)] = 7u +2
Plug-in u =e^x on w=7u +2 , we get: w= 7e^x+2
The indefinite integral will be:
int 2/(7e^x+4)dx =1/2ln[(7e^x+2-2)/(7e^x+2+2)]+C
=1/2ln[(7e^x)/(7e^x+4)]+C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...