Thursday, September 26, 2019

Single Variable Calculus, Chapter 3, 3.6, Section 3.6, Problem 31

a.) Find an equation of the tangent line to the curve $y^2 = 5x^4 - x^2$ which is also called Kampyle of Eudoxus, at the point $(1, 2)$.

Solving for the slope $(m)$


$
\begin{equation}
\begin{aligned}

\frac{d}{dx} (y^2) =& 5 \frac{d}{dx} (x^4) - \frac{d}{dx} (x^2)
\\
\\
2y \frac{dy}{dx} =& (5)(4x^3) - 2x
\\
\\
2yy' =& 20x^3 - 2x
\\
\\
\frac{\cancel{2y} y'}{\cancel{2y}} =& \frac{20x^3 - 2x}{2y}
\\
\\
y' =& \frac{20x^3 - 2x}{2y}
\\
\\
y' =& \frac{\cancel{2} (10x^3 - x)}{\cancel{2}y}
\\
\\
y' =& \frac{10x^3 - x}{y}

\end{aligned}
\end{equation}
$


For $x = 1$ and $y = 2$, we obtain


$
\begin{equation}
\begin{aligned}

y' =& \frac{10(1)^3 - 1}{2}
\\
\\
y' =& \frac{10 - 1}{2}
\\
\\
y' =& \frac{9}{2} \text{ or } m = \frac{9}{2}

\end{aligned}
\end{equation}
$


Using Point Slope Form


$
\begin{equation}
\begin{aligned}

y - y_1 =& m(x - x_1)
\\
\\
y - 2 =& \frac{9}{2} (x - 1)
\\
\\
y =& \frac{9x - 9}{2} + 2
\\
\\
y =& \frac{9x - 9 + 4}{2}
\\
\\
y =& \frac{9x - 5}{2} \qquad \text{Equation of the tangent line at $(1,2)$}

\end{aligned}
\end{equation}
$


b.) Graph the curve and the tangent line on a common screen

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...